LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

Bachelor of Engineering (B.E.) – Semester – IV

Course Code:	017103403
Course Name:	Thermodynamics 2
Category of Course:	Professional Core Course (PCC)
Prerequisite Course:	Mathematics 1 (017101191), Physics (017101192), Mathematics 3 (017101391), Engineering Mechanics (017102291), Thermodynamics 1 (017103301)

Teaching Scheme				
Lecture (L)	Tutorial (T)	Credit	Total Hours	
3	1	2	5	40

		Syllabus				
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teaching Hours		
	Properties of Steam 1.1 Types of steam and steam formation	(017102201				
	1.2 Enthalpy, specific volume, internal energy and dryness fraction of steam	Thermal properties (017103301- Unit-1.1) Types of steam and steam		5 (12.5%)		
01	1.3 Use of steam tables and Mollier's chart	formation (017103403-Unit-1.1), Finite differences (017101391- Unit-1.1)				
	1.4 Steam calorimeters – Barrel, Separating, Throttling and Combined (Separating and Throttling) calorimeters	Enthalpy, specific volume, internal energy and dryness fraction of steam (017103403-Unit-1.2), Basics of temperature measurement (017101192-Unit-8.1), Barometer (017101192-Unit-7.1)				
	First Law of Thermodynamics					
	2.1 First law for a closed system undergoing a cycle	Process, path and cycle (017103301-Unit-1.3)				
	2.2 First law for a closed system undergoing change of state	Process, path and cycle (017103301-Unit-1.3)		2		
02	2.3 Energy – a property of the system	Process, path and cycle (017103301-Unit-1.3)		(5%)		
	2.4 Energy of an Isolated system and PMM1 2.5 First law of thermodynamics for steady state flow process	First law of thermodynamics (017103403-Unit-2.2), First and higher order partial derivatives (017101191-Unit-5.4)				
	First Law Applied to Flow Processes					
	3.1 Steady flow energy equation applied to nozzle, diffuser					
0.5	3.2 Steady flow energy equation applied to turbine, compressor, pump			4		
03	3.3 Steady flow energy equation applied to boiler, heat exchanger and throttling			(10%)		
	3.4 Filling and emptying process	First law of thermodynamics for steady state flow process (017103403-Unit-3.1)				
	Second Law of Thermodynamics					
	4.1 Limitations of first law of thermodynamics	First law of thermodynamics (017103403-Unit-2.1, 2.2)				
04	4.2 Cyclic heat engine, energy reservoir	Heat and Work (017103301-Unit- 1.2)		(10%)		
	4.3 Kelvin-Planck and Clausius statements					
	4.4 Refrigerator and Heat Pump4.5 Equivalence of Kelvin-Planck and Clausius statements					
	Limitations and Applications of Second Law of Thermodynamics					
	5.1 PMM2	Second law of thermodynamics (017103403-Unit-4.3)				
05	5.2 Causes of irreversibility	Friction and its applications (017102291-Unit-7.1)		6 (15%)		
05	5.3 Carnot theorem and corollary of Carnot theorem	Cyclic heat engine, energy reservoir (017103403-Unit-4.2)		(15%)		
	5.4 Thermodynamic temperature scale	Cyclic heat engine (017103403- Unit-4.2)				
	5.5 Statement of third law of thermodynamics					

				<u> </u>	
	5.6 Numerical on applications of second law of thermodynamics				
	Basic Concepts of Entropy				
0.6	6.1 Clausius theorem	Basic integration (017101191- Unit-3.4), Thermodynamic temperature scale (017103403 Unit-5.4)		4	
06	6.2 Entropy is a property			(10%)	
	6.3 Inequality of Clausius and its numerical	Basic integration by formulae (017101191-Unit-3.4)			
	6.4 Entropy Principle				
	Applications of Entropy				
	7.1 Application of entropy principle (Mixing of two fluid, Heat transfer through a finite temperature difference) and its numerical				
07	7.2 Maximum work obtainable from Two finite Bodies and its numerical			4 (10%)	
07	7.3 Maximum work obtainable from a Finite body and a TER and its numerical			(10 /0)	
	7.4 Statement of Second law efficiency	Carnot gas power cycle (017103301-Unit-7.2) and Cyclic heat engine, energy reservoir (017103403-Unit-4.2)			
	Vapor Power Cycles				
	8.1 Carnot vapor cycle Properties of steam (017103403- Unit-1.1, 1.2)				
08	8.2 Rankine cycle	Constant volume process and constant pressure process (017103301-Unit-4.1), Finite differences (017101391-Unit-1.1)		3 (7.5%)	
	8.3 Comparison of Carnot and Rankine cycle			-	
	8.4 Calculation of cycle efficiencies				
	8.5 Variables affecting efficiency of Rankine cycle (Only Theory)				
	Vapor Compression Refrigeration System				
	9.1 Definitions of refrigeration, Air conditioning, Refrigerant			1	
09	9.2 Simple Vapor Compression Refrigeration system on P-h & T-s diagram and its numerical	Steady flow energy equation applied to turbine, compressor, pump (017103403-Unit-3.3), Second law of thermodynamics (017103403-Unit-4.2), Finite differences (017101391-Unit-1.1)		4 (10%)	
	9.3 Factors affecting the performance of the simple VCR system (Only Theory)				
	Multi Stage Vapor Compression Refrigeration System (Only Theory)				
	10.1 Two stage compression with water intercooler & liquid sub cooler				
10	10.2 Two stage compression with water intercooler	Simple Vapor Compression Refrigeration system(017103403-		(10%)	
10	10.3 Two stage compression with flash chamber	Unit-9.2)		(10/0)	
	10.4 Two stage compression with liquid subcooler	Om(-7.2)			

Major Components/ Equipment			
Sr. No.	Component/Equipment		
1	Pipe-in-pipe heat exchanger		
2	Mechanical Heat Pump		
3	Vapor compression refrigeration system		

Sr No.	Practical Title	Link to Theory Syllabus	
1	To determine heat loss from pipe-in-pipe heat exchanger using SFEE.	Unit-3	
2	To verify First and Second Law with Mechanical Heat Pump.	Unit-4	
3	To understand different components of VCR system and to determine its COP.	Unit-9	

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)

2

3 **L**: T: 1 P:

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%

Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage				
Theory			MCQ	34%	43				
Theory	4		Theory Descriptive	0%	0				
Theory	4		Formulas and Derivation	12%	15				
Theory			Numerical	34%	42				
Expected Theory %	80%	5	Calculated Theory %	80%	100				
Practical		5	Individual Project	10%	50				
Practical			Int			Group Project	Group Project	0%	0
Practical	1			Internal Practical Evaluation (IPE)	10%	50			
Practical			Viva	0%	0				
Practical			Seminar	0%	0				
Expected Practical %	20%		Calculated Practical %	20%	100				
Overall %	100%			100%	200				

Course	Course Outcome			
	Upon completion of the course students will be able to			
1	Evaluate steam properties using steam table and apply concepts of first law of thermodynamics.			
2	Understand second law of thermodynamics with its application and limitations.			
3	Apply concepts of entropy analysis for mixing of fluids, finite bodies and Thermal energy reservoir.			
4	Analyze vapor power cycle and vapor compression refrigeration system in real world.			
Suggest	ed Reference Books			
1	Engineering Thermodynamics by P.K. Nag, McGraw-Hill Education			
2	Fundamentals of Thermodynamics by Borgnakke and Sonntag, 7th Ed. Wiley India (P) Ltd.			
3	Thermodynamics – An Engineering Approach by Yunus Cengel and Boles, McGraw-Hill Education			
4	Engineering Thermodynamics by Gordon Rogers and Yon Mayhew, Pearson Education Ltd			
5	Engineering Thermodynamics by Krieth, CRC Press			
6	Engineering Thermodynamics by Jones and Dugan, PHI Learning Pvt. Ltd			
7	MATLAB for Mechanical Engineers by Rao V Dukkipati, New age science Ltd.,2009			

List of Open Source Software/Learning website		
1	http://nptel.ac.in	
2	www.coursera.org	

	Practical Project	
Sr. No.	Project List	Linked with Unit
1	Evaluate the power output from turbine for given conditions of steam with steam table data. Do Parametric analysis and plots for different variables.	Unit-3
2	Do velocity analysis of nozzle for given conditions of steam with steam table.	Unit-3
3	Heat transfer analysis of Heat Exchanger for given conditions of steam with steam table.	Unit-3
4	 Develop mathematical model for heat pump and refrigerator system to find the COP of the user given inputs. What changes you will suggest in the system if customer wants predefined COP value? Generate the plots to justify your analysis. 	Unit-4
5	Evaluate the entropy of system, surrounding and universe for any real-life problem. • Use any loop for user defined input Parametric analysis and plots for different variables	Unit-6
6	Develop mathematical model to find maximum work obtainable from Two finite Bodies. What will be the effect on maximum work with change in source and sink temperature? Justify your result with different types of plots.	Unit-7
7	Develop mathematical model to find maximum work obtainable from finite body and TER. What will be the effect on maximum work with change in source and sink temperature? Justify your result with different types of plots.	Unit-7
8	User should be able to find efficiency of Rankine cycle from your model. Do parametric analysis to see the effect of change in different system variables on the performance of the cycle.	Unit-8
9	Develop a model to analyze the effect of conditions (Dry, Superheated) of refrigerant at the inlet of compressor on COP of the system. Do Parametric analysis and plots for different variables.	Unit-9
10	Develop a program to find the effect of condenser pressure on COP of the system. Do Parametric analysis and plots for different variables.	Unit-9
11	Evaluate the effect of subcooling on COP of the system. Do Parametric analysis and plots for different variables.	Unit-9
12	Evaluate the effect of evaporator pressure on COP of the system. Do Parametric analysis and plots for different variables.	Unit-9