LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering(710)

Bachelor of Engineering (B.E.) – Semester – III

Course Code:	017103301			Teachi	ng Sch	eme	
Course Name: Thermodynamics 1			Lectur e (L)	Tutor ial (T)	Pract ical (P)	Cre dit	Tota l Hou rs
Category of Course:	Professional Core Course (PCC)		2	1	0	4	40
Prerequisite Physics (017101192), Mathematics 1 (017101191)			3	1	0	4	40

Syllabus					
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teac hing Hour s	
	Thermal Properties				
01	1.1 Basic terms (force, pressure, energy, work, power, internal energy, enthalpy, pure substance)	Work, energy, power (017101192-Unit-1.4)	Enthalpy, specific volume, internal energy and dryness fraction of steam (017103403– Unit- 1.2)	4	
	1.2 Heat and work (heat, temperature, sensible heat, latent heat, specific heat, work transfer and its types)	Work, energy, power (017101192-Unit-1.4)	Cyclic heat engine, energy reservoir (017103403– Unit- 4.2)	(10%)	
	1.3 Process, path and cycle (Property, state, change of state, path, process, cycle, path and point functions)		First Law of Thermodynamics (017103403– Unit- 2.1, 2.2, 2.3)		
	Basic Concepts of Thermodynamics				
	2.1 Microscopic and macroscopic point of view				
	2.2 Thermodynamic systems and control volume				
02	2.3 Homogeneous and heterogeneous systems	i heterogeneous		4 (10%)	
	2.4 Thermodynamic equilibrium , Concept of continuum			_	
	2.5 Quasi-static process	Process, path and cycle (017103301-Unit-1.3)			
	2.6 Statements of zeroth and first law, Temperature scales				

	Derivation and Numerical of Ga	ns Laws				
	3.1 Boyle's law and Charles's law					
03	3.2 Gay-Lussac's law and Gas constant			2 (5.5%)		
	3.3 Combined gas law and relation between specific heats and gas constant	Boyle's law and Charles's law (017103301-Unit- 3.1), Surds & Indices (017101191-Unit-1.2)				
	Various Non-flow Processes - W Transfer, Enthalpy and Relation					
	4.1 Constant volume process and constant pressure processGas constant (017103301- Unit-3.2)(017103403- 7.1)		Carnot vapor cycle (017103403– Unit- 7.1)			
	4.2 Isothermal process			6		
04	4.3 Adiabatic process and Polytropic process	Expansions and factorization (017101191- Unit-1.3), Basic differentiation by formulae (017101191- Unit-3.1)		(14%)		
	4.4 Index of Compression or Expansion					
	Properties of Gas Mixtures					
	5.1 Avogadro's law and equation of state with numerical					
05	5.2 Vander Waal's equation with numerical and determination of constants a & b			4 (10.5 %)		
	5.3 Reduced properties and law of corresponding states	Vander Waal's equation (017103301-Unit-5.2)				
	5.4 Basic Understanding of Compressibility chart			_		
	5.5 Statement of Gibbs – Dalton Law					
	Internal Combustion Engines					
	6.1 Classification of I.C. engine			4		
	6.2 Introduction of Engine Parts with their Functions					
06		Constant volume process and constant pressure		- 3 (7.5%)		
	6.3 Construction and working of Two- stroke I.C. engine	process & Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3)				
	Thermodynamic Cycle for I C E	Ingine				
07	7.1 Assumptions of air standard cycles	Constant volume process and constant pressure process (017103301-Unit- 4.1), Combined gas law (017103301-Unit-3.3)		7 (17.5 %)		
	7.2 Carnot gas power cycle	Isothermal process, Adiabatic process and Polytropic process	Second law efficiency (017103403– Unit-			

41		(017103301-Unit-4.2, 4.3)	6.5)		
	7.3 Terminology of I.C. engine with numerical (Indicated Power, Brake Power, Friction Power, Mechanical Efficiency, Thermal Efficiency, Relative Efficiency)	Details of I.C. engine (017103301-Unit-6.2)			
	7.4 Construction and working of Four stroke I.C. engine				
	7.5 Air standard efficiency & Mean Effective Pressure of Otto cycle with numerical	Constant volume process and constant pressure process (017103301-Unit- 4.1)			
	7.6 Air standard efficiency of Diesel cycle with numerical	Constant volume process and constant pressure process (017103301-Unit- 4.1)			
	Mixed Cycle				
	8.1 Air standard efficiency of Dual cycle with numerical	Air standard efficiency of Otto cycle, Diesel cycle (017103301-Unit-7.5, 7.6)			
08	8.2 Comparison of Otto, Diesel and Dual cycles (For Same Compression Ratio & For Same Maximum Pressure and Temperature)			4 (10%)	
	8.3 Comparison of SI and CI engines				
	8.4 Comparison of two and four stroke engines	Two-stroke I.C. engine (017103301-Unit-6.3), Four stroke I.C. engine (017103301-Unit-7.4)			
	Joule Cycle				
09	9.1 5 Air standard efficiency of Brayton cycle with numerical	Constant volume process and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas law (017103301-Unit- 3.3)		2 (5%)	
09	9.1 5 Air standard efficiency of	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit-			
09	9.1 5 Air standard efficiency of Brayton cycle with numerical9.2 Comparison of Brayton and Otto	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas			
09	 9.1 5 Air standard efficiency of Brayton cycle with numerical 9.2 Comparison of Brayton and Otto cycle Combustion Combustion Combustion equations, stoichiometric air fuel ratio 	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas			
09	 9.1 5 Air standard efficiency of Brayton cycle with numerical 9.2 Comparison of Brayton and Otto cycle Combustion 10.1 Combustion equations, 	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas		(5%)	
	 9.1 5 Air standard efficiency of Brayton cycle with numerical 9.2 Comparison of Brayton and Otto cycle Combustion Combustion equations, stoichiometric air fuel ratio 10.2 Calculation of Minimum Air Requirement 	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas law (017103301-Unit-3.3) 	 	(5%)	
09	 9.1 5 Air standard efficiency of Brayton cycle with numerical 9.2 Comparison of Brayton and Otto cycle Combustion Combustion Combustion equations, stoichiometric air fuel ratio 10.2 Calculation of Minimum Air Requirement 10.3 Enthalpy of formation, adiabatic 	and constant pressure process, Adiabatic process and Polytropic process (017103301-Unit- 4.1, 4.3), Combined gas		(5%)	

(017101192-Unit-8.1),	
Pressure gauges and	
bourdon tube	
(017101192-Unit-7.3)	

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)						
L :	3	Т:	1	P:	0	
subject. Each Test will	Note : In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%					
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage	
Theory			MCQ	57%	57	
Theory	4		Theory Descriptive (Mainly Programming)	0%	0	
Theory			Formulas and Derivation	10%	10	
Theory			Numerical	33%	33	
Expected Theory %	100%	4	Calculated Theory %	100%	100	
Practical			Individual Project	0%	0	
Practical			Group Project	0%	0	
Practical	0		Internal Practical Evaluation (IPE)	0%	0	
Practical			Viva	0%	0	
Practical			Seminar	0%	0	
Expected Practical %	0%		Calculated Practical %	0%	0	
Overall %	100%			100%	100	

Cour	se Outcome		
	Upon completion of the course students will be able to		
1	Narrate the various sources of energy and basic terminology related with thermodynamics along with basic calculations related to gas law.		
2	Recognize various thermodynamic processes & use various gas laws of real gas and their mixture.		
3	Analyze various heat engine cycles and understand construction and working of IC engines.		
4	Characterize combustion equation & learn calorimeter.		
Sugg	Suggested Reference Books		
1	Engineering Thermodynamics by P.K. Nag, McGraw-Hill Education		
2	Fundamentals of Thermodynamics by Borgnakke, Sonntag, 7th Ed. Wiley India (P) Ltd.		
3	Thermodynamics - An Engineering Approach by Yunus Cengel, Boles, McGraw-Hill Education		
4	Engineering Thermodynamics by Gordon Rogers and Yon Mayhew, Pearson Education Ltd		
5	Engineering Thermodynamics by Krieth, CRC Press		

List of Open Source Software/Learning website			
1	http://nptel.ac.in		
2	www.coursera.org		