LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Engineering (B.E.) – Semester – II

Course Code:	017101291	Teaching Scheme				
Course Name:	Mathematics - II	Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Basic Science Course (BSC)	2	2	0	=	50
Prerequisite Course:	Mathematics - I (017101191)	3	2	U	5	50

	S	Syllabus		
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teaching Hours
01	Matrices1.1 Elementary row operations of matrices1.2 Row and reduced row echelon form1.3 System of linear equations1.4 Homogeneous system of linear equations1.5 Non-homogeneous system of linear equations1.6 Inverse of Matrix (Using Gauss Jordan Method)1.7 Eigen values & vectors1.8 Diagonalization of matrix (Only for Non symmetric Matrix)1.9 Cayley-Hamilton theorem		Linear Programming Problems (017107701-Unit-2)	7 (14%)
02	Fourier Series2.1 Periodic function2.2 Dirichlet's condition2.3 Trigonometric series of sine and cosine function2.4 Fourier series of a function of period 2L2.5 Fourier series of even and odd function2.6 Half range expansions	Basic Differentiation and Integration (017101191- Unit-3)		5 (10%)
03	Fourier Integral and Fourier Transform3.1 Define Fourier integral3.2 Cosine and sine integral3.3 Define Fourier transform3.4 Cosine and sine transform	Fourier series of a function (017101291- Unit-3)		3 (6%)
04	Power Series4.1 Classification of singularities4.2 Series solution near ordinary points4.3 Series solution near regular singular points (Frobenius method)			4 (8%)
05	Laplace Transform5.1 Laplace transform of elementary functions5.2 Differentiation of Laplace transform5.3 Integration of Laplace transform5.4 Laplace transform of derivatives5.5 Laplace transform of integrals5.6 Unit step function and Dirac's delta function5.7 Inverse Laplace transform5.8 Convolution theorem (Without Proof)	Basic Differentiation and Integration (07101191- Unit-3)		8 (16%)
06	Application of Laplace Transform6.1 Solution of linear ordinary differential equation6.2 Solution of simultaneous equations (Ordinary Differential Equation)	Laplace Transform (017101291-Unit-5)		2 (4%)
07	Vector Differentiation7.1 Parametrization of curves7.2 Orientation of parametric curve7.3 Arc length of curve in space7.4 Curvature and surfaces7.5 Gradient of a scalar point function and surface normal vector7.6 Directional derivatives7.7 Divergence of vector field	Basic Differentiation and Integration (017101191- Unit-3)	Motion of Fluid Particles and Streams (017103491 – Unit-9)	5 (10%)

	7.8 Curl of vector field and scalar potential of conservative field					
08	Vector Integral-I					
	8.1 Line integral (Work Done)	Basic integration (017101191-Unit-3), Multiple Integral		5 (10%)		
	8.2 Green's theorem in the plane (without proof)	(017101191-Unit-8)				
09	Vector Integral-II					
	9.1 Surface integral			6		
	9.2 Gauss divergence theorem (without proof)	Multiple Integral		(12%)		
	9.3 Stoke's theorem (without proof)	(017101191-Unit-8)				
	9.4 Volume integral					
	Basic Probability and Statistics					
	10.1 Mathematical definition of probability					
10	10.2 Axiomatic approach of probability		5			
	10.3 Addition law of probability			(10%)		
	10.4 Conditional of probability (Baye's theorem)	onditional of probability (Baye's theorem) lathematical expectation				
	10.5 Mathematical expectation					
	10.6 Basic introduction of statistics: Central tendency					

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)						
L:	3	T:	2	P:	0	
Note: In Theory Gro	up, Total 4 Test (T1	+T2+T3+7	(4) will be conducted for each subject.			
Each Test will be of 2	25 Marks.					
Each Test Syllabus V	Veightage: Range sh	ould be 20	% - 30%			
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage	
Theory			MCQ	15%	15	
Theory	5		Theory Descriptive	0%	0	
Theory			Formulas and Derivation	10%	10	
Theory			Numerical	75%	75	
Expected Theory %	100%	5	Calculated Theory %	100%	100	
Practical			Individual Project	0%	0	
Practical			Group Project	0%	0	
Practical	0	0		Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0	
Practical			Seminar	0%	0	
Expected Practical %	0%		Calculated Practical %	0%	0	
Overall %	100%			100%	100	

Course (Dutcome
	Upon completion of the course students will be able to
1	Understand and apply matrix operation and properties, solve systems of linear equations using matrices, analyze systems using eigen values and
	eigne vectors, apply matrices in signal processing tasks, Explain the concept of Fourier series and its properties
2	Design filter and modulation schemes and Implement algorithms like FFT for efficient computation of Fourier transforms, Understand and apply
	Laplace transforms to solve linear ODEs with constant coefficients.
3	Understand the significance of ordinary and singular points with Bessel functions, Legendre polynomials, other special function also apply
	gradient to solve problems involving normal vectors to level surfaces and the concept of a vector integration in a plane and space.
4	Develop proficiency in the use of Gauss's theorem, and Stokes' theorem for solving practical engineering problems and understand the
	fundamental concepts of probability, random variables, and probability distributions.
Suggeste	d Reference Books
1	Elementary Linear Algebra, Applications version, Anton and Rorres, Wiley India Edition.
2	Advanced Engineering Mathematics, Erwin Kreysig, Wiley Publication.
3	Calculus, Volumes 2, T. M. Apostol, Wiley Eastern
4	Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers.
5	Thomas' Calculus, Maurice D. Weir, Joel Hass, Early Transcendentals, 13e, Pearson, 2014

List of O	pen-Source Software/Learning website
1	https://nptel.ac.in/courses/