LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Artificial Intelligence and Machine Learning (704)

Bachelor of Engineering (B.E.) – Semester – II

Course Code:	017041291		
Course Name:	Mathematics - II		
Category of Course:	Basic Science Course (BSC)		
Prerequisite Course:	Mathematics - I (017041191)		

Teaching Scheme				
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
3	2	0	5	50

	S	yllabus					
Unit No.	Topic	Prerequisite Topic	Successive Topic	Teaching Hours			
	Matrices						
	1.1 Elementary row operations of matrices Divide & Conquer (017043591-						
	1.2 Row and reduced row echelon form		Unit-3)				
	1.3 System of linear equations			_			
01	1.4 Homogeneous system of linear equations		_	(14%)			
VI.	1.5 Non-homogeneous system of linear equations		Cryptography(017043791-Unit-	(14/0)			
	1.6 Inverse of Matrix (Using Gauss-Jordan Method)		2)				
	1.7 Eigen values & vectors	E		-			
	1.8 Diagonalization of matrix (Only for Non-symmetric Matrix)	Factorization(017041191-Unit-					
	1.9 Cayley-Hamilton theorem	1)					
	Fourier Series						
	2.1 Periodic function			5			
	2.2 Dirichlet's condition			(10%)			
02	2.3 Trigonometric series of sine and cosine function	Basic integration (017041191-		(1070)			
	2.4 Fourier series of a function of period 2L	Unit-3)					
	2.5 Fourier series of even and odd function			-			
	2.6 Half range expansions						
	Some Special Functions	,					
	3.1Gamma function, Beta function. (And its Properties)			<u> </u>			
	3.2 Bessel function, Dirac's Delta function (Definition only)			-			
03	3.3 Error function and complementary Error function (Definition			4			
	only) 2.4 Hasviside's function, mules which height and dynation function.						
	3.4 Heaviside's function, pulse unit height and duration function (Definition only)			(8%)			
	3.5 Rectangle function, Gate function (Definition only)			(0,0)			
	3.6 Signum function, Saw tooth wave function (Definition only)			_			
	3.7 Triangular wave function, Halfwave rectified sinusoidal			-			
	function, Full rectified sine wave, Square wavefunction.						
	(Definition only)						
	Fourier Integral and Fourier Transform						
	4.1 Define Fourier integral			4			
04	4.2 Cosine and sine integral	Basic integration (017041191-		(8%)			
	4.3 Define Fourier transform	Unit-3)		-			
	4.4 Cosine and sine transform						
	First Order Ordinary Differential Equations						
	5.1 Geometric meaning of $y' = f(x, y)$ direction fields			5			
05	5.2 Exact differential equations and integrating factor	5		(10%)			
	5.3 Linear differential equations	Basic differentiation &		-			
	5.4 Bernoulli equations	integration(017041191-Unit-3)					
	Higher Order Ordinary Differential Equations			_			
	6.1 Linear differential equations of second and higher order			_			
	6.2 Homogeneous linear differential equations of higher order			-			
	6.3 Higher order non-homogeneous equations6.4 Solution by undetermined coefficients	Factorization(017041191-Unit-		_			
	6.5 Solution by variation of parameters	1)		_			
	6.6 Solution by [1/f(D)] r(x) method for finding particular	<u>'</u>		-			
06	integral.			(14%)			
vv	6.7 Ordinary differential equations with variable coefficient	Solution by undetermined		(17/0)			
	(Reducible to constant coefficient) (Cauchy-Euler's &	coefficients (017041291-Unit-					
	Legendre's Equation)	6), Solution by [1/f(D)] r(x)					
		method for finding particular					
		integral (017041291-Unit-6)					

	Modeling of Ordinary Differential Equations		
07	7.1 Orthogonal trajectories of curves (Only Cartesian Curves)	First order ordinary differential equations (017041291-Unit-5)	 3 (6%)
07	7.2 Oscillations and resonance (For undamped Forced Oscillations)	Higher order ordinary differential equations	 (0%)
	7.3 Modeling: Electric Circuits (Only RLC-Circuit)	(017041291-Unit-6)	
	Power Series		
	8.1 Classification of singularities		 5
08	8.2 Series solution near ordinary points		 (10%)
	8.3 Series solution near regular singular points		
1	(Frobenius Method)		
	Laplace Transform		
	9.1 Laplace transform of elementary functions		
	9.2 Differentiation of Laplace transform		
	9.3 Integration of Laplace transform		 7
09	9.4 Laplace transform of derivatives	Basic differentiation &	 (14%)
	9.5 Laplace transform of integrals	integration(017041191-Unit-3)	
	9.6 Unit step function and Dirac's delta function		
	9.7 Inverse Laplace transform		
	9.8 Convolution theorem		
	Application of Laplace Transform		
		Laplace transform of	
10	10.1 Solution of linear ordinary differential equation	elementary functions, Laplace	3
		transform of derivatives, Unit	(6%)
		step function and Dirac's delta	 (5,5)
	10.2 Solution of simultaneous equations	function, Inverse Laplace	
		transform, Convolution	
		theorem(017041291-Unit-9)	

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)					
L: 2 P: 0					
**	7D 4 1 4 7D 4 7D4	me me m			

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%

Each Test Synabus Weightage. Range should be 2070 - 5070					
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	15%	15
Theory	5		Theory Descriptive	0%	0
Theory	5		Formulas and Derivation	10%	10
Theory			Numerical	75%	75
Expected Theory %	100%	5	Calculated Theory %	100%	100
Practical		J	Individual Project	0%	0
Practical			Group Project	0%	0
Practical	0		Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0
Practical			Seminar	0%	0
Expected Practical %	0%		Calculated Practical %	0%	0
Overall %	100%			100%	100

Cours	se Outcome
	Upon completion of the course students will be able to
CO1	Understand and apply matrix operation and properties, solve systems of linear equations using matrices, analyze systems using eigen values and eigne
	vectors, apply matrices in signal processing tasks, Explain the concept of Fourier series and its properties, Apply Fourier series in digital
	communications and image processing also in control system analysis.
CO2	Design filter and modulation schemes and Implement algorithms like FFT for efficient computation of Fourier transforms, Apply Bessel functions and
	other special function to solve engineering problems. Solve first order & first degree ODEs using various methods.
CO3	Solve higher order linear ODEs using various methods such as undetermined coefficients, variation of parameters. Formulate ODEs from real-world
	engineering problems. Apply knowledge of ODEs to design and analyze systems in computer engineering domains. Apply orthogonal trajectories in
	edge detection algorithms for image processing and utilize for curve fitting and surface modeling in computer graphics. Understand the significance of
	ordinary and singular points in ODEs.
CO4	Understand and apply Laplace transforms to solve linear ODEs with constant coefficients. Apply knowledge to real-world engineering problems,
	especially in signal processing, circuit analysis, control system and system modeling.
Sugge	ested Reference Books
1	Elementary Linear Algebra, Applications version, Anton and Rorres, Wiley India Edition.
2	Advanced Engineering Mathematics, Erwin Kreysig, Wiley Publication.
3	Advanced Engineering Mathematics, Dennis G. Zill, 4 th edition, Jones and Bartlett Publishers.
4	Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers.

List o	List of Open Source Software/Learning website		
1	https://nptel.ac.in		