

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering

Subject Code: 3171920 SUBJECT NAME: Finite Element Methods B.E 7th SEMESTER

Type of Course: - Professional Elective

Pre-requisite:-

Rationale: The course aims to impart basic skills of formulation and application of finite element methods for the analysis of mechanical systems.

Teaching and Examination Scheme:

Teaching Scheme Cred			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical N	Marks	Marks
				ES (E)	PA (M)	ESE (V)	PA	
							(I)	
3	0	2	4	70	30	30	20	150

CONTENT:-

Sr. No	Course Content	Total Hours			
1	Fundamental Concents	110015			
1	Introduction Stresses and Equilibrium Boundary Conditions Strain—Displacement	05			
	Relations. Stress—Strain Relations. Temperature Effects. Potential Energy and				
	Equilibrium: The Rayleigh-Ritz Method, Potential Energy, Rayleigh-Ritz Method,				
	Galerkin's Method, Saint Venant's Principle, Von Mises Stress , Principle of				
	Superposition, Matrix Algebra and Gaussian Elimination, Conjugate Gradient Method for				
	Equation Solving, Conjugate Gradient Algorithm				
2	One-Dimensional Problems	09			
	Introduction ,Finite Element Modeling ,Element Division, Numbering Scheme, Shape				
	Functions and Local Coordinates, The Potential-Energy Approach, Element Stiffness				
	Matrix, Force Terms, The Galerkin Approach, Element Stiffness, Force Terms, Assembly				
	of the Global Stiffness Matrix and Load Vector, Properties of K , The Finite Element				
	Equations: Treatment of Boundary Conditions, Types of Boundary Conditions, Elimination				
	Approach, Penany Approach, Multipoint Constraints, Quadratic Shape Functions Tomperature Effects Problem Modeling and Boundary Conditions Problem in				
	Temperature Effects, Problem Modeling and Boundary Conditions, Problem in Equilibrium Symmetry Two Elements with Same End Displacements Problem with a				
	Closing Gan				
3	Trusses	09			
•	Introduction Plane Trusses, Local and Global Coordinate Systems, Formulas for	01			
	Calculating I and m, Element Stiffness Matrix, Stress Calculations, Temperature Effects,				
	Three-Dimensional Trusses, Assembly of Global Stiffness Matrix for the Banded and				
	Skyline Solutions, Assembly for Banded Solution, Skyline Assembly, Problem Modeling				
	and Boundary Conditions, Inclined Support in Two Dimensions, Inclined Support in Three				
	Dimensions-Line Constraint, Inclined Support in Three Dimensions-Plane Constraint,				
	Symmetry and Antisymmetry				
4	Beams and Frames	06			
	Introduction, Potential-Energy Approach, Galerkin Approach, Finite Element Formulation,				
	Element Stiffness–Direct Approach, Load Vector, Boundary Considerations, Shear Force				
	and Bending Moment, Beams on Elastic Supports, Plane Frames, Three-Dimensional				
F	Two Dimonsional Problems using Constant Strain Triangles	00			
3	I wo-Dimensional Froblems using Constant Strain Triangles	00			
	Representation, Potential-Energy Approach, Element Stiffness, Force Terms, Integration				

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171920

Susjeer Couerer 1710				
	Formula on a Triangle, Galerkin Approach, Stress Calculations, Temperature Effects,			
	Problem Modeling and Boundary Conditions, Some General Comments on Dividing into			
	Elements, Patch Test and Convergence, Patch Test, Orthotropic Materials, Temperature			
	Effects.			
6	Axisymmetric Solids Subjected to Axisymmetric Loading	07		
	Introduction, Axisymmetric Formulation, Finite Element Modeling: Triangular Element,			
	Potential-Energy Approach, Body Force Term, Rotating Flywheel, Surface Traction,			
	Galerkin Approach, Stress Calculations, Temperature Effects, Problem Modeling and			
	Boundary Conditions, Cylinder Subjected to Internal Pressure, Infinite Cylinder, Belleville			
	Spring, Thermal Stress Problem			
	Total	45		

Reference Books:

- 1. Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D., PHI.
- 2. A First Course in Finite Elements, Jacob Fish, Ted Belytschko, John Wiley & Sons Ltd
- 3. An Introduction to Finite Element Method, J N Reddy, McGraw Hill.
- 4. Concepts and Applications of Finite Element Analysis, R D Cook, Wiley India.

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage
Recall	10
Comprehension	10
Application	30
Analysis	40
Evaluate	10
Create	

Course Outcome:

After learning the course the students will be able to:

Sr.	CO statement	Marks %
No.		weightage
CO-1	Demonstrate the concepts of finite element methods and its application in the field of mechanical engineering.	20
CO-2	Analyse one dimensional and two dimensional systems using finite element methods.	40
CO-3	Make use of finite element methods for analysis of trusses, beams, frames and axisymmetric solids.	30
CO-4	Estimate thermal stresses of machine elements.	10

List of Experiments:

- 1. Introduction to Finite Element Analysis software.
- 2. Solve 1D Structural, thermal and fluid problems using FEA software and manually.
- 3. Solve Plane truss problems, using FEA software and manually. Include problems with symmetry.
- 4. Solve Beam problems with different boundary and loading conditions using FEA software and manually.
- 5. Solve planar problems.
- 6. Solve axisymmetric problems.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171920

Major Equipment:

1. Computational facility and FAE solvers.

List of Open Source Software/learning website:

1. http://nptel.ac.in