

Syllabus for Integrated MCA 3rd Semester Subject Name: Statistical Methods (SM) Subject Code: 2638602

With effective from academic year 2018-19

1. Learning Objectives:

To understand and apply various concepts, techniques and methods used in Descriptive Statistics and Inferential Statistics. The knowledge and skills gained will equip students in carrying out preliminary Data Analytics tasks, and to prepare foundation to understand and apply the statistical techniques in various fields such as Total Quality Management, Simulation, Game Theory, Operations Research, etc in addition to Computer Science topics such as Machine Learning, Cryptography, Artificial Intelligence, Operating Systems, Data Structures and Algorithms, etc.

2. Prerequisites: Preliminary mathematical concepts

3. Contents:

Unit	Course Content	Weightage
		Percentage
Unit I	Introduction to Statistics and Descriptive Statistics	18%
	Introduction, Broad areas (classification) of Statistics;	
	Describing Data Visually: Frequency Distributions and Histograms;	
	Pie Charts; Bar Charts: Pareto Chart, Scatter Plots (Degree of	
	Association); Line Charts	
	Descriptive Statistics: Central Tendency; Mean and its	
	Characteristics,	
	Median and its Characteristics, Quartiles and Percentiles, Mode;	
	Dispersion: Range, Mean Absolute Deviation, Interguartile Range	
	(IOR):	
	Variance, Standard Deviation and its Characteristics, Coefficient of	
	Variation:	
	Standardized Data: Chebyshey's Theorem, Outliers:	
	Box Plots: Fences and Unusual Data Values	
	Grouped Data: Nature. Mean and Standard Deviation. Accuracy	
	Issues	
	Skewness: Coefficient of Skewness:	
	Kurtosis: Leptokurtic, Platykurtic, Mesokurtic:	
	Measures of Association: Covariance Correlation Coefficient of	
	Correlation: Correlation and Causation	
Unit II	Probability and Probability Distributions	24%
	Trobability and Trobability Distributions	2470
	Introduction: Common Framework: Experiment Event Elementary	
	Events Sample Space Definition of Probability Marginal	
	Probability:	
	Probability of Union of Events (Addition Laws) Probability Matrix	
	Probability of Complement of a Union: Probability of Loint Events	
	(General I awa of Multiplication): Conditional Probability: Mutually	
	Evalusive Events Independent Events Devision of Drobabilities:	
	Exclusive Events, independent Events; Kevision of Probabilities:	
	Bayes Kule	

Syllabus for Integrated MCA 3rd Semester Subject Name: Statistical Methods (SM) Subject Code: 2638602

	Subject Code: 2058002	
	Discrete Probability Distributions: Introduction, Binomial	
	Distribution, Poisson Distribution, Applications;	
	Continuous Probability Distributions: Introduction, Normal	
	Distribution, Exponential Distribution, Applications;	
Unit III	Sampling, Sampling Distributions and Estimation	24%
	Types of Sampling: Random, Nonrandom; Sampling Distribution of	
	x-bar; Central Limit Theorem; z Formula for Sample Mean; Standard	
	Error of Mean; Sampling from a Finite Population; Sampling	
	Distribution of a Proportion, Standard Error of Proportion	
	Estimation for Single Population: Estimating the Population Mean	
	using z Statistic (σ Known); Estimating the Population Mean using	
	the z Statistic when the Sample Size is Small; Estimating the	
	Population Mean using t Statistic (σ Unknown); Estimating the	
	Population Proportion; Estimating the Population Variance;	
	Estimating Sample Size	
Unit IV	One Sample Hypothesis Tests	18%
	Introduction; Null Hypothesis, Alternate Hypothesis; Type I & Type	
	II Errors, Testing Hypotheses about a Population Mean using z	
	Statistic (σ Known); Using Critical Value Method to test Hypotheses,	
	Examples; Population Mean Testing Hypotheses about a Population	
	Mean using t Statistic (σ Unknown); Testing Hypotheses about a	
	Proportion; Testing Hypotheses about a Variance	
Unit V	Regression	16%
	Introduction, Simple Regression Analysis, Least Square Analysis to	
	Determine the Equation of Regression Line; Residual Analysis,	
	Using Residual to Test the Assumptions of the Regression Model;	
	Standard	
	Error of the Estimate; Coefficient of Determination; Hypothesis	
	Testing for the Slope of the Regression Model; Testing the Overall	
	Model; Using Regression to Develop a Forecasting Trend Line	

Desirable Topics:

a) Unit II:

- **Overview**: Other Discrete and Continuous Probability Distributions
- **b) Unit IV:**
- Overview: Statistical Inferences about Two Populations; Analysis of Variance c) Unit V
 - **Overview:** Multiple Regression Model; Mathematical Transformation of Nonlinear Models to Linear Models

4. Text Book:

1) Ken Black, "Business Statistics for Contemporary Decision Making", Wiley Student Edition, 2010

5. Reference Books:

1) David P. Doane, Lori E. Seward, "Applied Statistics in Business and Economics" Tata McGraw-Hill, 2010

Syllabus for Integrated MCA 3rd Semester Subject Name: Statistical Methods (SM) Subject Code: 2638602

With effective from academic year 2018-19

- 2) Anderson, Sweeney, Williams, "Statistics for business and economics", 9th edition,
- **3**) Thompson Publication
- 4) Bharat Jhunjhunwala, "Business Statistics", first edition, S Chand, 2008
- 5) Richard Levin, David Rubin, "Statistics for Management", 7th edition, PHI
- 6) Nabendu Pal, Sahadeb Sarkar, "Statistics-Concepts and Applications", 2nd edition, PHI
- 7) J. Susan Milton & Jesse Arnold, "Introduction to Probability & Statistics: Principles & Applications for Engineering & Computing Sciences", McGraw-Hill Education
- 8) S P Gupta, "Statistical Methods", 30th edition, S Chand

6. Chapter wise coverage from the Text Books:

Unit#	Chapter #
Ι	Chapter 1,2,3
II	Chapter 4,5,6
III	Chapter 7,8
IV	Chapter 9,10,11
V	Chapter 14,15,16

7. Accomplishment of the student after completing the course:

Students will be able to apply various concepts, techniques and methods used in Descriptive Statistics and Inferential Statistics in carrying out preliminary Data Analytics tasks. They will also be able to apply the statistical techniques in various fields such as Total Quality Management, Simulation, Game Theory, Operations Research, etc in addition to Computer Science topics such as Machine Learning, Cryptography, Artificial Intelligence, Operating Systems, Data Structures and Algorithms, etc.

Practical List

Objectives: To implement statistical concepts using a standard tool, such as R. Such implementation is aimed at improved visualization of theoretical concepts. It is also aimed at laying a foundation for Data Analytics and Data Science

Prerequisites: Logical Thinking and Basic Statistical Concepts

Advice (Note) to Teachers:

The list of exercises given below is an indicative list.

Note: R has many datasets. Get the available datasets through command data(). Use R commands related to Statistics for several datasets for a good practice.

Some exercises have been labeled as "**Mandatory**" while other exercises have been marked as "**Desirable**". It is expected that all the students will do **Mandatory** exercises while bright students will additionally do **Desirable** exercises as well.

List of Computer Lab Exercises

1. Introduction and a quick tour to R and R Studio (to be done in Lab) [09 Hours]

(a) Basic data structures and constructs

- (b) Available R Datasets, such as mtcars, faithful, etc
- (c) Null, NA, Missing Values

Syllabus for Integrated MCA 3rd Semester Subject Name: Statistical Methods (SM) Subject Code: 2638602

(d) Basic Packages related to Statistics: e. g. stats, stats4, graphics, grDevices, modeest, agricolae, etc.

2. Descriptive Statistics	[09 Hours]
(a) Compute Mean, Median, Quartiles, Percentile (use quantile() function	n), Variance,
Standard Deviation, IQR, Minimum & Maximum Values, Summary S	Statistics &
interpretation (Mandatory)	
(b) Histogram, Scatter Plot, Box Plot, Density Plot of R data sets and inte	erpretation
	(Mandatory)
(c) Generate Frequency Distribution of data as a data frame	(Mandatory)
(d) Compute Correlation Coefficient and Covariance	(Mandatory)
3. Probability and Probability Distributions	[09 Hours]
(a) Use pnorm(), pbinom(), ppois(), pexp() functions to compute probability	lities (Mandatory)
(b) Use dnorm(), dbinom(), dpois(), dexp() functions to compute	probability density
functions	(Mandatory)
(c) Use qnorm(), qbinom(), qpois, qexp() functions to get x value corresp	onding to given
probability value	(Mandatory)
(d) Use different parameter values in 3 (a), and 3 (b) to observe the impart	ct of different
parameter values and prepare a note on that.	
	(Mandatory)
(e) Plot above results and interpret	(Desirable)
(f) Statistical test for normality using shapiro.test() function	(Desirable)
4. Sampling, Sampling Distribution, Hypothesis Testing	[12 Hours]
(a) Random sampling with or without replacement using (Mandatory)	sample() function

- (b) Generate n random samples (take n = 10, 50, 100, 200, 500, 1000 as an example), create a vector of Sample Means. Draw the Density Plot of Sample Means to visualize Central Limit Theorem (Mandatory)
- (c) Take a sample and carry out Hypothesis Testing for the following cases:

(Mandatory)

[06 Hours]

- 1. Std. Deviation known, Large Sample Size, Sample from Non-Normal Population
- 2. Std. Deviation known, Small Sample Size, Sample from Normal Population
- 3. Std. Deviation known, Small Sample Size, Sample from non-Normal Population
- 4. Std. Deviation not known
- 5. Hypothesis Test for Variance (Chi-square Test)

5. Regression and Linear Modeling

- (a) Linear regression: One Independent Variable using lm() function; Interpret the output of Model Analysis, Compute Correlation Coefficient, Interpret results (Mandatory)
- (b) Linear regression: Multiple Independent Variables using lm() function; Interpret the (Mandatory) output of Model Analysis

Reference Books:

- 1. Pierre-Andre Cornillon, Arnaud Guyader, Francois Husson, Nicolas Jegou, Julie Josse, Maela Kloareg, Eric Matzner-Lober, Laurent Rouvière, "R for Statistics", CRC Press, Rs. 525/-.
- 2. Dr. Mark Gardener, "Beginning R: The Statistical Programming Language", Wiley, Rs. 450/-
- 3. Paul Teetor, "R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics", O'Reilly Cookbooks, Rs. 700/-

With effective from academic year 2018-19

Syllabus for Integrated MCA 3rd Semester Subject Name: Statistical Methods (SM) Subject Code: 2638602 With effective from academic year 2018-19

<u>Reference Websites:</u>

- 1. https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
- 2. https://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf
- **3.** https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/reading-questions-r-intro/
- 4. https://www.datacamp.com/introduction-to-statistics
- 5. http://tut-dl.com/item/lynda-r-statistics-essential-training
- 6. https://www.analyticsvidhya.com > Machine Learning
- 7. https://www.coursera.org/learn/r-programming
- 8. https://www.analyticsvidhya.com/blog/2016/02/free-read-books-statistics-mathematics data-science/

Accomplishment of the student after completing the course:

- 1. Students will be able to carry out preliminary data analysis with results displayed graphically, and study the characteristics of standard probability distributions with their plots.
- 2. Students will also be able to demonstrate the inductive proof of Central Limit Theorem and go through linear regression (model) with fitness test of model.

Note: Some of the practicals form the above practical list may have seemingly similar definitions. For better learning and good practice, it is advised that students do maximum number of practicals. In the practical examination, the definition asked need not have the same wordings as given in the practical list. However, the definitions asked in the exams will be similar to the ones given in the practical list.