

LOK JAGRUTI KENDRAUNIVERSITY Syllabus LJ School of Computer Applications & Technology (Integrated) Semester- III

Course Code	050120303				
Category	Core Subject				
Course Title	Data Structures (DS)				
Scheme and	Theory	Tutorial	Lab	Credits	
Credits					
	4	0	4	6	
Pre-requisites	• Basic knowledge of writing and understanding algorithms for				
(if any)	solving a problem.				
	• Basic knowledge of C programming language.				

1. Course Objectives:

Sr.	Course Outcome (Learner will be able to)				
1.	To understand how a problem is solved step by step to get the desired output				
2.	To learn the right way to organize information in the digital space				
3.	To understand the fundamental concept of elementary data structures and their implementation.				
4.	To understand where and how the data structures are implemented in real world				
5.	To learn how to write efficient and optimized computer programs.				

2. Course Contents:

Module	Course Content	Weightag
Unit 1	Introduction to Data Structures Concept of Data structures, Impact of using data structures in algorithms, Introduction to calculation of Time Complexity and Space Complexity, Introduction to Linear and Non Linear Data structures.	10%
Unit II	Linear Data Structures Storage representation of Arrays – Single dimensional arrays and double dimensional arrays (Row major order and column major order), Concept of Sparse Matrices and its operations (Transpose addition and subtraction).	15%
Unit III	 Advanced Linear Data Structures: Linked lists, Stacks, Queues Linked List: Basic concept, Storage representation, Types of Linked lists (Singly, Doubly, Circular), Operations on linked list (Insert, modify, delete, union, intersection, merge, sort, searching), Applications of Linked list (Polynomial operations – Addition and multiplication), Header linked lists. Stack: Basic concept, Storage representation (Array and linked 	30%

LOK JAGRUTI KENDRAUNIVERSITY Syllabus LJ School of Computer Applications & Technology (Integrated) Semester- III

	 list), Basic Operations (PUSH, POP, PEEP AND CHANGE), Applications of Stacks (Polish and reverse polish expressions), Arithmetic Expression evaluation using stack. Queues: Basic concept, Storage representation (Array and Linked list), Basic Operations (INSERT AND DELETE). Types of Queues- Circular, Deque, Priority queues (Only concept). Application of Queues (Simulation, Scheduling algorithms). 	
Unit IV	Non Linear Data Structures – Trees and Graphs.	
	 Trees – Basic concept, terms associated with trees(Node, parent, child, link, root, leaf, level, height, in degree, out degree, siblings), Storage representation – Linear and Linked , Types of tree (Binary Tree, BST, Expression tree, AVL Tree,2-3 tree, B tree, Threaded binary tree), Conversion of General tree to Binary tree, Complete Binary tree, full binary tree, BST operations, Tree traversals – In order, Pre-order, Post-order Graphs-Basic concepts, technical terms associated with Graphs – Digraph, Weighted graph, adjacent vertices, self-loop, parallel edges, simple graph, complete graph, isolated vertex, Degree of a vertex, connected graph-, Storage representation (Set representation, Adjacency matrix, Adjacency list), Graph Traversing algorithms- DFS and BFS. Overview of Concept of Minimum Spanning Tree – Prim's 	25%
	Algorithm, Kruskal's Algorithm, Shortest path algorithm – Dijikstra 's algorithm	
Unit V	Sorting and Searching Algorithms	
	Sorting Algorithms: Bubble, Selection, Insertion, Shell, 2- Way Merge sort, Radix sort. Heap sort and Quick sort.	20%
	Searching Algorithms: Linear Search and Binary Search, Introduction to Hashing and hashing methods, collision resolution techniques.	

3. Text Books:

- 1. Debasis Samanta, Classic Data Structures, PHI, Second Edition.
- **2.** Jean-Paul Tremblay, Paul G. Sorenson, "An Introduction to Data Structures with Applications", Tata McGraw-Hill, 2nd Edition, (2007).
- 3. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson, Second Edition,
- 4. Ashok N. Kamthane, "Introduction to Data Structures in C", Pearson Education (2004).
- **5.** G. A.V.PAI,"Data Structures and Algorithms, Concepts, Techniques and Applications", TMH , 1st Edition (2008).
- 6. Reema Thareja, Data Structures using C, Oxford

4. Webilography:

- 1. https://www.tutorialspoint.com/data_structures_algorithms
- 2. https://www.javatpoint.com/
- 3.https://www.geekforgeeks.org/data-structure/

LOK JAGRUTI KENDRAUNIVERSITY Syllabus LJ School of Computer Applications & Technology (Integrated) Semester- III

5. Accomplishment of the student after completing the course:

- 1. Ability to design and implement various abstract data types.
- 2. Understand the applications of various data structures in the basic computer system.
- 3. Understand and implement the various sorting and searching methods on the data sets (big and small).