

Syllabus for two Years

School of Computer Applications, Master of Computer Applications (MCA)

| Semester - 1            |                                          |          |     |         |  |  |
|-------------------------|------------------------------------------|----------|-----|---------|--|--|
| Course Code             | 040110105                                |          |     |         |  |  |
| Category                | Interdisciplinary                        |          |     |         |  |  |
| Course Title            | Basic Mathematics                        |          |     |         |  |  |
| Scheme and Credits      | Theory                                   | Tutorial | Lab | Credits |  |  |
|                         | 3                                        | 0        | 0   | 3       |  |  |
| Pre-requisites (if any) | Basic knowledge of mathematical concepts |          |     |         |  |  |

## 1. Course Objective:

| 1 | To understand the foundations of many basic mathematical topics used in                          |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Computer Science including RDBMS, Data Structures, Analysis of                                   |  |  |  |  |  |
|   | Algorithms, Theory of Computation, Cryptography, Artificial Intelligence, Statistics and others. |  |  |  |  |  |
| 2 | To understand the concepts of sets, logic, cross product of sets and Matrix                      |  |  |  |  |  |
|   | Algebra.                                                                                         |  |  |  |  |  |

## 2. Course contents :

| Module   | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weightage |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Unit I   | Number System<br>Introduction, Basic Properties of Integers: Closure, Commutative<br>Laws, Associative Laws, Identity Elements, Additive Inverse,<br>Distributive Laws, Cancellation Laws; Well-ordering Principle;<br>Division Algorithm: Quotient, Remainder, <i>div</i> and <i>mod</i> operators,<br>Divisibility; Greatest Common Divisor (GCD); Euclidean<br>Algorithm for Finding the GCD; Relative Prime; Least Common<br>Multiples (LCM); Representation of Integers in Computer;<br>Decimal, Binary, Octal, and Hexadecimal Representation.                 | 30%       |
| Unit II  | Set Theory<br>Set Theory: Basic Concepts of Set Theory: Definition, Two<br>Methods to Describe (Represent) Sets; Examples, (Im)proper<br>Subsets, Superset, Equality of Sets; Empty (Null) Set, Universal<br>Set, Finite and Infinite Sets, Power Set; Operations on Sets:<br>Union, Intersection, Complement, Venn Diagrams; Disjoint Sets,<br>Various Laws: Identity, Idempotent, Commutative, Associative,<br>Distributive, Absorption, DeMorgan; Difference (Relative<br>Complement), Symmetric Difference of Two Sets; Cartesian<br>Product; PowerSet of a Set. | 30%       |
| Unit III | Matrix Algebra<br>Introduction; Representation of a Matrix; Equality of Matrices;<br>Special Matrices: Rectangular / Square Matrices, Null (Zero)<br>Matrix, Unit Matrix, Diagonal Matrices, Triangular Matrices;                                                                                                                                                                                                                                                                                                                                                    | 15%       |



LJ University LOK JAGRUTI KENDRA UNIVERSITY

Syllabus for two Years

School of Computer Applications, Master of Computer Applications (MCA)

Semester - 1

|         | Semester - 1                                                 |  |  |  |
|---------|--------------------------------------------------------------|--|--|--|
|         | Sum and Difference of 2 Matrices; Multiplication of 2        |  |  |  |
|         | matrices; Transpose of a Matrix, Symmetric Matrices; Boolean |  |  |  |
|         | (Zero-One) Matrices, Boolean Join, Boolean Meet; Theorems    |  |  |  |
|         | and Exercises (without Proof), Sparse Matrix, Magic Matrix.  |  |  |  |
| Unit IV | IV Propositional Logic                                       |  |  |  |
|         | Definition, Statement (Proposition) & Notation, Truth        |  |  |  |
|         | Values, Connectives: Negation, Conjunction, Disjunction,     |  |  |  |
|         | Implication(condition), Bi-implication (Bi-conditional),     |  |  |  |
|         | Truth Tables for all Connectives, Statement Formulas         |  |  |  |
|         | (Well-formed Formulas), Truth Tables, Tautologies,           |  |  |  |
|         | Contradiction, Logical Equivalence: Commutative Laws,        |  |  |  |
|         | Associative Laws, Distributive Laws, Absroption Laws,        |  |  |  |
|         | Idempotent Laws, Double Negation Law, DeMorgan's             |  |  |  |
|         | laws, Examples; Validity of Arguments, Some Valid            |  |  |  |
|         | Argument Forms: Modus Ponens, Modus Tollens,                 |  |  |  |
|         | Disjunctive Syllogism, Dilemma, Equivalence of               |  |  |  |
|         | Formulas: Conjunctive Simplification, Disjunctive            |  |  |  |
|         | Addition, Conjunctive Addition, Theorems (without            |  |  |  |
|         | Proof).                                                      |  |  |  |
|         |                                                              |  |  |  |

Note: Proofs of Theorems not required

## 3. Text Books:

- 1. <u>Swapan Kumar Chakraborty</u>, <u>Bikash Kanti Sarkar</u> "Discrete Mathematics "(Oxford Higher Education) (2011)
- 2. J.P.TremblayandR.Manohar, "DiscreteMathematicalStructureswithApplicationstoComputerS cience", TataMcGraw-Hill(2010)
- **3.** Bernard Kolmann & others, "DiscreteMathematicalStructure", PearsonEducation, Sixth Edition
- 4. D.S.Malik&M.K.Sen,"DiscreteMathematics",Cengage Learning(2004)

## 4. Accomplishment of the student after completing the course:

This course will enhance the student's ability to think logically and mathematically.