LOK JAGRUTI UNIVERSITY (LJU)

L J INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Computer Engineering

Master of Engineering (M. E)

Semester: I

Branch: Computer Engineering (Software Engineering)

Course Code:	20-CE-PG-049010101	
Course Name:	Applied Mathematics	
Category of Course:	Core	
Prerequisite Course:	Basics of Linear Algebra Elementary Single Variable Calculus Fundamentals of Probability & Statistics	

Teaching Scheme				
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
3	1	0	4	40

Course Objectives		
1	To able to understand the fundamental concepts and methods of Mathematics applied in Computer engineering.	
2	By the concepts and methods of linear algebra, Students are able to use them to think about problems arising in Computer engineering.	
3	To Understand how to apply concept of linear algebra, Probability, Graph theory and statistics in computer programming languages.	
4	To able to write small programs in the programming language Python to implement basic matrix and vector functionality and algorithms.	
5	To able to understand Concept of Applied Mathematics connected with the other subjects of Computer engineering.	
6	To able to think about How to apply the fundamental concepts and methods of Applied Mathematics in other branches of Computer engineering.	

Syllabus			
Unit No.	Торіс	Prerequisite Topic	Teaching Hours
01	Linear Algebra I 1.1 Row reduction and echelon forms- uniqueness of echelon forms -Matrix operations including inverses 1.2 Systems of linear equations 1.3 linear transformations and its algebra and representation by matrices		5 (11.5%)
02	Linear Algebra II2.1 Eigen values and Eigen vectors - Cayley Hamilton's theorem2.2 Diagonalization2.3 Principal Component Analysis - PCA		4 (10%)
03	Multivariate Calculus I 3.1 Functions of Two or More Variables - Limits and Continuity in Several Variables 3.2 Partial Derivatives - Total Derivative - The Chain Rule 3.3 Tangent Planes - Gradient and Directional Derivatives		5 (11.5%)
04	Multivariate Calculus II4.1 Tangent Plane and Normal Lines for Function of Several Variables4.2 Optimization in Several Variables4.3 Lagrange Multipliers-Optimizing with a Constraint		4 (10%)
05	Graph Theory 5.1 Isomorphism-Planar graphs 5.2 Graph Coloring-Hamilton circuits - Euler cycles 5.3 Permutations and Combinations with and without repetition		3 (8.5%)
06	Probability Theory I6.1 Random variable and sample space - notion of probability6.2 Axioms of probability - Empirical approach to probability-Joint Probability6.3 Conditional probability - Independent events - Bayes' Theorem with Contingency table and exercise.		4 (10%)
07	Probability Theory II7.1 Mathematical Expectation-Moment Generation Function7.2 Bernoulli Distribution - Binomial Distribution-Poisson Distribution7.3 Normal Distribution - Student's T Distribution-Chi Squared Distribution- Exponential Distribution- Gaussian Distribution - Beta Distribution-Gamma Distribution		4 (10%)
08	Statistics I 8.1 Mean - Median - Mode - Skewness - Variance - Standard Deviation - Coefficient of Variation - Correlation - Coefficient of Correlation 8.2 Conditional probability - Central limit theorem 8.3 Hypothesis Testing - Null and Alternative -Rejection Region and Significance Level- Type I & II Errors		4 (10%)
09	Statistics II 9.1 Bayesian hypothesis testing - Loss function - Confidence interval		4 (10%)

	9.2 Naive Bayes - Tree Augmented Naive Bayes - Gaussian mixture models	
	Time Series Forecasting	
10	10.1 Moving Averages - Exponential Smoothing	3
	10 .2 ARIMA Models in Time Series Analysis	 (8.5%)
	10.3 Multivariate Time Series	

Course	Outcome	
1	Fluency with matrix algebra, including the ability to put systems of linear equation in matrix format and solve them using matrix multiplication and	
	the matrix inverse.	
2	A comprehensive understanding of the gradient, including its relationship to level curves (or surfaces), directional derivatives, and linear	
	approximation.	
3	The ability to set up and solve optimization problems involving several variables, with or without constraints	
4	Compute conditional probabilities directly and using Bayes' theorem, and check for independence of events.	
Suggested Reference Books		
1	Introduction to Linear Algebra, Strang Gilbert 5th ed. Wellesley, MA: Wellesley-Cambridge Press	
2	Thomas Calculus Early Transcendentals, Thomas 14th ed. Pearson	
3	Probability and Statistics with Reliability, Queuing, and Computer Science Applications, K. Trivedi, Wiley.	
4	Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining (Wiley)	
5	An Introduction to Probability theory and Mathematical Sciences, V.K.Rohatgi and A.K.Md.Ehsanes Saleh Wiley, 2001	
6	Graph Theory with Applications in Engineering and Computer Science, Narshing Deo, Prentce Hall, Inc	
7	Introduction to Time Series Analysis and Forecasting, Douglas C. Montgomery. Cheryl L. Jennings. Murat Kulahci. (Wiley)	

Proposed Evaluation Scheme by Academicians (Percentage of Weightage out of 100%)			
Theory Descriptive Test	MCQ Test	Hands on Project	
Formulas and Derivation Test	Numerical Test	Seminar	

List of Recommended MOOC Courses:

- 1) https://www.coursera.org/learn/linear-algebra-machine-learning
- 2) https://www.coursera.org/learn/graphs?specialization=discrete-mathematics
- 3) https://www.coursera.org/learn/probability-theory-statistics
- 4) https://www.udemy.com/course/master-linear-algebra-and-probability-2-in-1bundle/?utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.INDIA&utm_content=deal4584&utm_term=_.ag_ 82569850245_.ad_437477497173_.kw_.de_c_.dm_.pl_.ti_dsa-

392284169515_.li_9061769_.pd__._&matchtype=b&gclid=Cj0KCQiAwf39BRCCARIsALXWETyKtq6Fme7FMfqN0BPRBWeHmlpbxzKx2dzSX3 gv_SIeXFKBmYy1DZIaAsrNEALw_wcB