LOK JAGRUTI UNIVERSITY (LJU)
 L J INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Computer Engineering

Master of Engineering (M. E)

Semester: I
Branch: Computer Engineering (Software Engineering)

Course Code:	20-CE-PG-049010101
Course Name:	Applied Mathematics
Category of Course:	Core
	Basics of Linear Algebra Elementary Single Variable Calculus Statistics

Teaching Scheme					
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours	
3	1	0	4	40	

Course Objectives

To able to understand the fundamental concepts and methods of Mathematics applied in Computer engineering.
By the concepts and methods of linear algebra, Students are able to use them to think about problems arising in Computer engineering.
To Understand how to apply concept of linear algebra, Probability, Graph theory and statistics in computer programming languages.
To able to write small programs in the programming language Python to implement basic matrix and vector functionality and algorithms.
To able to understand Concept of Applied Mathematics connected with the other subjects of Computer engineering.
To able to think about How to apply the fundamental concepts and methods of Applied Mathematics in other branches of Computer engineering.

Syllabus			
$\begin{aligned} & \text { Unit } \\ & \text { No. } \end{aligned}$	Topic	Prerequisite Topic	Teaching Hours
01	Linear Algebra I		$\begin{gathered} 5 \\ (11.5 \%) \end{gathered}$
	1.1 Row reduction and echelon forms- uniqueness of echelon forms -Matrix operations including inverses	---	
	1.2 Systems of linear equations		
	1.3 linear transformations and its algebra and representation by matrices		
02	Linear Algebra II		$\begin{gathered} 4 \\ (10 \%) \end{gathered}$
	2.1 Eigen values and Eigen vectors - Cayley Hamilton's theorem	---	
	2.2 Diagonalization		
	2.3 Principal Component Analysis - PCA		
03	Multivariate Calculus I	---	$\begin{gathered} 5 \\ (11.5 \%) \end{gathered}$
	3.1 Functions of Two or More Variables - Limits and Continuity in Several Variables		
	3.2 Partial Derivatives - Total Derivative -The Chain Rule		
	3.3 Tangent Planes - Gradient and Directional Derivatives		
04	Multivariate Calculus II	---	$\begin{gathered} 4 \\ (10 \%) \end{gathered}$
	4.1 Tangent Plane and Normal Lines for Function of Several Variables		
	4.2 Optimization in Several Variables		
	4.3 Lagrange Multipliers-Optimizing with a Constraint		
05	Graph Theory	---	$\begin{gathered} 3 \\ (8.5 \%) \end{gathered}$
	5.1 Isomorphism-Planar graphs		
	5.2 Graph Coloring-Hamilton circuits - Euler cycles		
	5.3 Permutations and Combinations with and without repetition		
06	Probability Theory I	---	$\begin{gathered} 4 \\ (10 \%) \end{gathered}$
	6.1 Random variable and sample space - notion of probability		
	6.2 Axioms of probability - Empirical approach to probability-Joint Probability		
	6.3 Conditional probability - Independent events - Bayes' Theorem with Contingency table and exercise.		
07	Probability Theory II		$\begin{gathered} 4 \\ (10 \%) \end{gathered}$
	7.1 Mathematical Expectation-Moment Generation Function	---	
	7.2 Bernoulli Distribution - Binomial Distribution-Poisson Distribution		
	7.3 Normal Distribution - Student's T Distribution-Chi Squared DistributionExponential Distribution- Gaussian Distribution - Beta Distribution-Gamma Distribution		
08	Statistics I		$\begin{gathered} 4 \\ (10 \%) \end{gathered}$
	8.1 Mean - Median - Mode - Skewness - Variance - Standard Deviation Coefficient of Variation - Correlation - Coefficient of Correlation	---	
	8.2 Conditional probability - Central limit theorem		
	8.3 Hypothesis Testing - Null and Alternative -Rejection Region and Significance Level- Type I \& II Errors		
09	Statistics II		$\begin{gathered} 4 \\ (10 \%) \\ \hline \end{gathered}$
	9.1 Bayesian hypothesis testing - Loss function - Confidence interval	---	

	9.2 Naive Bayes - Tree Augmented Naive Bayes - Gaussian mixture models		
10	Time Series Forecasting		$\begin{gathered} 3 \\ (8.5 \%) \end{gathered}$
	10.1 Moving Averages - Exponential Smoothing	---	
	10.2 ARIMA Models in Time Series Analysis		
	10.3 Multivariate Time Series		

Course Outcome

Fluency with matrix algebra, including the ability to put systems of linear equation in matrix format and solve them using matrix multiplication and the matrix inverse.
2 A comprehensive understanding of the gradient, including its relationship to level curves (or surfaces), directional derivatives, and linear approximation.
3 The ability to set up and solve optimization problems involving several variables, with or without constraints
$4 \quad$ Compute conditional probabilities directly and using Bayes' theorem, and check for independence of events.

Suggested Reference Books

1	Introduction to Linear Algebra, Strang Gilbert 5th ed. Wellesley, MA: Wellesley-Cambridge Press

Thomas Calculus Early Transcendentals ,Thomas 14th ed. Pearson
Probability and Statistics with Reliability, Queuing, and Computer Science Applications, K. Trivedi, Wiley.
Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining (Wiley)
An Introduction to Probability theory and Mathematical Sciences, V.K.Rohatgi and A.K.Md.Ehsanes Saleh Wiley, 2001
Graph Theory with Applications in Engineering and Computer Science, Narshing Deo,Prentce Hall,Inc
Introduction to Time Series Analysis and Forecasting, Douglas C. Montgomery. Cheryl L. Jennings. Murat Kulahci. (Wiley)

Proposed Evaluation Scheme by Academicians (Percentage of Weightage out of 100\%)

Theory Descriptive Test	MCQ Test	Hands on Project
Formulas and Derivation Test	Numerical Test	Seminar

List of Recommended MOOC Courses:

1) https://www.coursera.org/learn/linear-algebra-machine-learning
2) https://www.coursera.org/learn/graphs?specialization=discrete-mathematics
3) https://www.coursera.org/learn/probability-theory-statistics
4) https://www.udemy.com/course/master-linear-algebra-and-probability-2-in-1-
bundle/?utm_source=adwords\&utm_medium=udemyads\&utm_campaign=DSA_Catchall_la.EN_cc.INDIA\&utm_content=deal4584\&utm_term=_._ag_ 82569850245_._ad_437477497173_._kw__._de_c_._dm__._pl__._ti_dsa-
392284169515_._li_9061769_._pd__._\&matchtype=b\&gclid=Cj0KCQiAwf39BRCCARIsALXWETyKtq6Fme7FMfqN0BPRBWeHmlpbxzKx2dzSX3 gv_SIeXFKBmYy1DZIaAsrNEALw_wcB
