LOK JAGRUTI UNIVERSITY (LJU)
 L J INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

Master of Engineering (M. E) - Semester - I

Course Code:	49050101	Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Course Name:	Advanced Engineering Mathematics-1	2	2	0	4	40
Category of Course:	Core					
Prerequisite Course:	UG level course in Engineering Mathematics					

Course Objectives	
1	To derive Metrix representation of system of linear equations, linear transformation and concepts of Inner products.
2	To understand the importance of basis and orthogonality in Eigen value and Eigen vector.
3	To develop the skill different types of methods of solving Differential equations.
4	To able to apply different conditions as per requirement in methods Advanced Engineering Mathematics.
5	To able to apply accurate Mathematical methods in real life problems of Mechanical Engineering.

Syllabus			
Unit No.	Topic	Prerequisite Topic	Teaching Hours
01	Basic of Matrix and Linear Algebra		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	1.1 Introduction of Matrix and Linear algebra.	---	
	1.2 Matrices \& System of linear equations.		
	1.3 Methods for solving system of linear Equations with geometrical approach.		
	1.4 Application of system of linear Equations		
02	Vector space \& Inner Product space		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	2.1 Definition of Vector Space and Its Properties.	---	
	2.2 Linear combination and basis of Vector spaces.		
	2.3 Introduction to Inner Product Space with properties.		
	2.4 Orthogonalization of basis.		
03	Eigen Vectors and Eigen Values		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	3.1 Introduction to Eigen Value and Eigen Vectors	---	
	3.2 Properties of Eigen Value and Eigen Vectors, Algebraic and Geometric Multiplicity		
	3.3 Diagonalization of Square Matrix		
	3.4 Conversion of Quadratic form in to Canonical form		
04	Linear Transformation	---	$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	4.1 Definition of Linear transformation with Examples		
	4.2Types of Linear transformations.		
	4.3 Matrices of Linear Transformation, Kernel and Range of Linear Transformation		
	4.4 Row space, Column space, Null space of Linear transformation		
05	Matrix Decomposition and Approximations		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	5.1 The Cholesky decomposition		
	5.2 QR factorization		
	5.3 Least squares method		
	5.4 Power method		
06	Laplace Transformation	---	$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	6.1 Definition of Laplace transform and it's Properties		
	6.2 Inverse Laplace transform and it's Properties		
	6.3 Convolution Theorem with Examples		
	6.4 Unit step function and Dirac's Delta function		
07	Fourier Series and Transform		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	7.1 Introduction to Fourier series	---	
	7.2 Fourier Series of Discontinuous Functions		
	7.3 Fourier Sine and Cosine Series		
	7.4 Fourier Transform		
08	Method to solving Ordinary Differential Equations-I		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	8.1 Introduction to Differential Equations and its types.	---	
	8.2 Formation of Differential Equation.		
	8.3 Methods for solving $1^{\text {st }}$ order ODE.		
	8.4 Initial value problems of $1^{\text {st }}$ order ODE with Application.		
09	Method to solving Ordinary Differential Equations-II		$\begin{gathered} 04 \\ (10 \%) \end{gathered}$
	9.1 Method for solving Higher order linear Ordinary Differential Equations.	---	
	9.2 Initial value problems in Higher order linear Ordinary Differential Equations.		
	9.3 Application of Laplace to solve Higher order linear ODE.		

10	Method to solving Partial Differential Equations		$\begin{gathered} 04 \\ (\mathbf{1 0 \%}) \end{gathered}$
	10.1 Introduction to Partial Differential Equations	---	
	10.2 Method of Separable Variables to solve PDE.		
	10.3 Introduction of Wave and Heat Equation and their Solutions.		
	10.4 Example's solution of Wave \& Heat equations by Fourier Series.		

Course Outcome	
1	Students will understand fundamentals of Linear Algebra and their geometrical meanings.
2	Students will be bable to solve problems in their relevant branch using mathematical methods of linear algebra.
3	Students will be able to apply knowledge of Laplace \& Fourier Transform in different fields of mechanical branch.
4	Students will be able to get best accurate solutions Using Approximation methods.
5	Students will be able to develop Ordinary and partial Differential equations in their relevant fields.
6	Students will be able to solve mechanical system problems using IVP \& BVP.
Suggested Reference Books	
1	Bronson, R. "Matrix Operations", Schaum's outline series, 2ne Edition, McGraw Hill, 2011.
2	Advanced Engineering Mathematics by Erwin Kreyszig.
3	O'Neil, P.V.,. "Advanced Engineering Mathematics ", Thomson Asia Pvt. Ltd.., Singapore, 2003.
4	Introduction to Linear Algebra, Strang Gilbert 5th ed. Wellesley, MA: Wellesley-Cambridge Press
5	Differential Equations: Theory, Technique and Practice, G.F. Simmons, S. G. Krantz, Tata Mc GrawHill Publishing, 2007.
6	An introduction to Ordinary Differential Equations, James C. Robinson, Cambridge University Press, New York, 2008 (4th print).
7	Differential Equations and their Applications by M Braun
8	An Introduction to Ordinary Differential Equations by Earl A Coddington and Mathematics
9	Partial Differential Equations by Erich Miersemann Department of Mathematics Leipzig University.

Proposed Evaluation Scheme by Academicians (Percentage of Weightage out of $\mathbf{1 0 0 \%}$)

Theory Descriptive Test	\square	MCQ Test	\square	Hands on Project
Formulas and Derivation Test	\square	Numerical Test	\square	Seminar

Practical Project/Hands On Project		
Sr. No.	List of Practical Projects	Linked with Unit
1	Identify Matrix Transformation for Image editing features like zooming, scaling, rotating, etc..	Unit 1
2	Define Different Vector space with different Operations.	Unit 2
3	Describe geometric approach of Quadratic form in to Canonical form with example.	Unit 3
4	Derive general form of Projections.	Unit 4
5	Define problems in Least squares method.	Unit 5
6	Find and apply concepts of Laplace Transform in Mechanical branch.	Unit 6
7	Find and apply concepts of Fourier Transform in Mechanical branch	Unit 7
8	Construct one real life 1 ${ }^{\text {st }}$ order Ordinary Differential Equation	Unit 8
9	Construct one Higher order Ordinary Differential Equation and solve with IVP.	Unit 9
10	Describe Heat equation Solution with different boundary value Problems.	Unit 10

