

Syllabus for Master of Computer Applications, 5th Semester Subject Name: Image Processing (IP) Subject Code: 4659309

With effective from academic year 2018-19

1. Learning Objectives:

- To understand basic concepts and methodologies for digital image processing
- To develop a foundation that can be used as the basis for further study and research in this field.
- To provide understanding of the different types of image representations, enhancing image characteristics, image filtering, and reducing the effects of noise and blurring in an image.
- To understand image processing needed for extracting information from an image.
- 2. Prerequisites: Knowledge of Computer Graphics is desirable.

3. Course Contents:

Unit	Course Content	Weightage
		Percentage
Unit I	Introduction to Digital Image Processing and Fundamental	10%
	Introduction: What is Digital Image Processing? Fundamental steps	
	in Digital Image processing, Components of Image Processing	
	system	
	Digital Image Fundamentals- Some basic relationships like	
	Neighbours, Connectivity, and Distance Measures between pixels.	
	Overview of mathematical tools used in digital image processing	
Unit II	Transformations, Histogram Processing and Spatial Filtering	30%
	Image Enhancement in the spatial domain: Background, Some	
	basic Gary Level Transformations, Histogram Processing,	
	Fundamentals of spatial filtering, Smoothening and Sharpening	
	Spatial Filters	
	Filtering in the frequency Domain: Background, Introduction to	
	Fourier Transform (FT) and frequency domain, Computing and	
	Visualizing the Discrete Fourier Transform (DFT) of one variable,	
	Extension to functions of two variables - 2D DFT, Image	
	Smoothing and Sharpening Using Frequency Domain Filters	
Unit III	Image Restoration	15%
	Image Restoration: A model of the Image Degradation/Restoration	
	process, Noise Models, Restoration in the presence of noise only -	
	Spatial filtering	
Unit IV	Morphological Image Processing	20%
	Morphology: Dilation, Erosion, Opening and Closing, The Hit-or-	
	Miss Transformation, Morphological Algorithms: Boundary	
	Extraction, Region filling, Extraction of connected components,	
	Convex Hull, Thinning, Thickening, Skeletons, Pruning,	
	Morphological reconstruction	
Unit V	Image Segmentation and Object Recognition	25%
	Image Segmentation: Fundamentals, Point, Line and Edge	
	Detection, Region Based Segmentation	
	Object Recognition : Pattern and Pattern Classes, Recognition	
	Based on Decision Theoretic Methods- Matching, Optimal	
	Statistical Classifier, Neural Networks, Object recognition based	
	on structural methods – Matching Shape Numbers	

Syllabus for Master of Computer Applications, 5th Semester Subject Name: Image Processing (IP) Subject Code: 4659309

With effective from academic year 2018-19

4. Text Book:

1) Richard E Woods, Rafael C Gonzalez, "Digital Image Processing", Pearson, 3rd Edition

5. Reference Books:

- 1) Anil K. Jain, "Fundamentals of Digital Image Processing", Prentice-Hall India, 1989
- 2) B. Chanda and D. Datta Majumder, "Digital Image Processing and Analysis", Prentice-Hall India, 2nd edition (October 30, 2011)
- 3) Madhuri A. Joshi, "Digital Image Processing", Prentice-Hall India, 2006

6. Chapter wise Coverage from the Text Book:

Unit #	Chapter
Ι	Chapter 1: 1.1, 1.4,1.5
	Chapter 2: 2.5, 2.6
II	Chapter 3: 3.1, 3.2, 3.4, 3.5, 3.6
	Chapter 4 : 4.1,4.2,4.4,4.5,4.8,4.9
III	Chapter 5: 5.1 ,5.2,5.3
IV	Chapter 9: 9.1,9.2,9.3,9.4, 9.5
V	Chapter 10: 10.1, 10.2, 10.4
	Chapter 12: 12.1, 12.2, 12.3.1

7. Accomplishment of the student after completing the course:

- 1) Understanding of the principals the Digital Image Processing and terminology used to describe features of images.
- 2) Understanding of the mathematical foundations for digital manipulation of images; image acquisition; pre-processing; segmentation; Fourier domain processing.
- 3) Be able to write programs for implementing image processing tasks.
- 4) Learn and understand the Image Enhancement techniques.
- 5) Learn and understand Image Segmentation and Recognition concepts.

Syllabus for Master of Computer Applications, 5th Semester Subject Name: Image Processing (IP) Subject Code: 4659309 With effective from academic year 2018-19

Practical List

Objective:

Learning the use of Python and OpenCV to implement basic image processing algorithms and to build and execute image processing based projects to solve real life problems

Prerequisites: Knowledge of OpenCV and Python **Lab Experiments:**

- 1. Getting started with images
 - a. Learn to load an image, display it and save it back
- 2. Drawing functions in OpenCV
 - a. Draw lines, rectangles, ellipses, circles, ellipses, polygons, adding text to images
- 3. Perform Basic operations on images
 - Read and edit pixel values, working with image -other basic operations.
- 4. Perform Arithmetic operations on images
- 5. For a sample images change images between different color spaces
- 6. Showing images in an OpenCV window
- Read, write, view images and conversion between different formats.
- 7. Write code to perform following:
 - Loads 2 images (Image 1 say I1 and Image 2 say I2)
 - Computes the pixel-wise difference between the two images
 - Computes an output image where each pixel of coordinates (x,y) contains the absolute difference of the corresponding pixels on I1 and I2
 - Out(x,y) = abs(I1(x,y) I2(x,y))
 - Displays output image in a window
- 8. Write code to change brightness of the colour image and show negative of an image.
- 9. Histograms-1: Find, Plot, Analyze
 - Find and draw contours
- 10. Histograms-2: Histogram Equalization Equalize histograms to get better contrast for images
- 11. Histograms-3: 2-D Histograms Find and plot 2-D histograms
- 12. Apply different Geometric transformations to images like rotation, translation, crop
- 13. Apply various Scaling operations on the image resize, down size & upsize (preserve aspect ratio), resize only width, resize only height, resize to fixed height and width
- 14. Convert images to binary images using global thresholding, adaptive thresholding, Otsu's binarization.
- 15. Blur the images, filter the images with custom kernels.
- 16. Find the Fourier Transform of images using OpenCV using the FFT functions available in Numpy.
- 17. OpenCV provides variations to remove Noise
 - cv2.fastNlMeansDenoising()-works with a single grayscale images

cv2.fastNlMeansDenoisingColored()—works with a color image.

Use these functions to denoise grayscale and colour images.

- 18. Do you have an old degraded photo with many black spots and strokes on it? Take it. Try to restore it with a technique called image inpainting.
- 19. Perform Morphological Transformations Erosion, Dilation, and Opening, Closing on a sample image.

Syllabus for Master of Computer Applications, 5th Semester Subject Name: Image Processing (IP) Subject Code: 4659309

With effective from academic year 2018-19

- 20. Find Image Gradients.
- 21. Find edges with Canny Edge Detection.
- 22. Apply Hough Line Transform to Detect lines in an image.
- 23. Apply Hough Circle Transform to Detect circle in an image.
- 24. Apply Watershed Algorithm and k-means algorithm for Image Segmentation.
- 25. Search for an object in an image using Template Matching.
- 26. Detect QR code.
- 27. Detect text in natural scenes.

References:

- 1) Alexey Spizhevoy, Aleksadr Rybnikov, "OpenCV3 Computer Vision with Python Cookbook", Packt Publishing Ltd., 2018
- 2) <u>https://opencv-python-</u> <u>tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspace</u> <u>s.html</u>
- OpenCV-Python Tutorials Documentation Release 1, Alexander Mordvintsev & Abid K, Nov 05, 2017,

https://media.readthedocs.org/pdf/opencv-python-tutroals/latest/opencv-python-tutroals.pdf

- 4) <u>https://codewords.recurse.com/issues/six/image-processing-101</u>
- 5) <u>https://pythonprogramming.net/image-operations-python-opencv-tutorial/</u>
- 6) <u>http://www.imageprocessingplace.com/root_files_V3/image_databases.htm</u> (to obtain sample images)