GUJARAT TECHNOLOGICALUNIVERSITY <u>MASTERS IN COMPUTERAPPLICATION</u> Year –1(Semester–II) (W.E.F. Dec 2017)

Subject Name: Data Structures (DS) Subject Code: 3620002

Learning Objectives:

- To develop proficiency in the specification, representation, and implementation of Data Types and Data Structures.
- To introduce the concepts of algorithmic paradigms and basic data structures and their applications.
- To implement and compare various searching and sorting techniques.
- To apply appropriate data structures to solve different problems.

Prerequisites:

- Proficiency in a programming language
- Specification and implementation of basic operations on stack, queue, tree and graph

Outcomes:

- Apply sorting and searching algorithms to small and large data sets.
- Ability to design and implement abstract data types such as linked list, stack, queue, graphs and trees.

Contents:

Unit	Title	Number of
No.		Lectures
Ι	Introduction to Data Structure and Algorithm Analysis:	4
	Data Structure Definition and classification, Storage Representation	
	of Strings, Text Handling and KWIC Indexing.	
II	Linear Data Structures:	8
	Arrays, Storage Structure for Arrays,	
	Stack : List Implementation, Applications of Stacks : Function Call,	
	Recursion, Balancing Symbols	
	Queue: List Implementation, Circular Queue, Priority Queue, double	
	ended queue.	
	Linked List : Cursor Implementation, Multi List	
	Applications of Linked List : Addition and Multiplication of	
	Polynomial in one and two variables	

III	Nonlinear Data Structures:	14
	<u>Graphs:</u> Introduction Definition Matrix Representation of Graphs List	
	Structures, Directed/Undirected Graphs, Weighted/Unweighted	
	Graphs Path, Paths of different lengths, Cycle, Cylic Graphs, Acylic	
	Graphs, Spanning Trees, Shortest Path.	
	Trees:	
	Introduction, Definition, Basic Tree Concepts, , Storage	
	Representation of Binary Trees, Operations on Binary Trees, Tree	
	Traversal, Conversion of General Tree to Binary Trees, Sequential &	
	Other Representation of Trees, Application of Trees - The	
	Manipulation of Arithmetic Expression, Multi-linked Structures -	
	Sparse Matrices.	
IV	Sorting and Searching Techniques:	14
	Introduction, Definition, Sorting – Notation and Concepts, Selection	
	Sort, Bubble Sort, Merge Sort, Heap Sort, Quick Sort, Radix Sort,	
	Searching - Sequential Searching, Binary Searching, Search Trees -	
	Height Balanced, 2-3 Trees, Weight Balanced Tree, Trie Structures,	
	Hash Table Search Methods, Hashing Functions, Collision Resolution	
	Techniques.	

Text Books:

- 1. "An Introduction to Data Structures with Applications", Jean-Paul Tremblay, Paul G. Sorenson, Tata McGraw-Hill, 2nd Edition, (2007)
- 2. "Data Structures and Algorithm Analysis in C", Second Edition, Mark Allen Weiss, Pearson Education (2002)

Reference Books:

- 1. "Introduction to Data Structures in C", Ashok N. Kamthane, Pearson Education (2004).
- 2. "Introduction to Algorithm", Cormen, Leiserson, Rivest, Stein, 2nd Edition, PHI (2003).
- 3. "Design and Analysis of Algorithms", Parag H Dave, Himanshu B Dave, Pearson (2014)
- 4. "Data Structures Using C", Samir Kumar Bandyopadhyay, Kashi Nath Dey, Pearson Education, Year: 2004.
- 5. "Data Structures and Algorithms", Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Pearson Education (2002).
- 6. "Fundamentals of Data Structures in C", Horowitz, Sahni, Anderson-Freed, University Press (2nd edition-2007)
- 7. "Data Structures and Algorithms, Concepts, Techniques and Applications", G. A.V.PAI, , TMH , 1st Edition (2008).