

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3722106 Semester – II Subject Name: Computational Fluid Dynamics

Type of course: Program Elective

Prerequisite: Nil

Rationale: The course is formulated to impart detailed study of computational techniques in field of fluid flow and heat transfer.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs			
1	Introduction: What is Computational fluid dynamics (CFD) and how it works? CFD as design and research tool, impact of CFD in Engineering, governing equations of fluid dynamics: Models flow, time rate of change (of moving fluid element), divergence of velocity and its physical meaning, continuity, momentum and energy equations, mathematical behaviour of partial differential equations				
2	Basic Concept of Discretization: Introduction to discretization technique, introduction to finite differences: Taylor's series expansion, difference equations: explicit and implicit approach, errors and stability analysis, CFL condition Grid Transformation: Introduction, general transformation equations, matrices and Jacobean, transformed version of governing equation particularly suited for CFD, compressed grids, elliptic grid generation, adaptive grids	10			
3	Simple CFD Technique: Lax Wandroff technique, Mac-Cormack's technique, relaxation technique and its use with low speed, alternating direction implicit technique (ADI), pressure correction technique: need for staggered grid and its formula, boundary condition for pressure correction method	8			
4	Heat Conduction and Convection: Conduction: 1D conduction equation, grid layout discretization, stability and convergence, dealing with non-linearity, methods of solution, 2D conduction. Convection: 1D convection, exact solution and its discretization, upwind difference scheme, comparison of central difference scheme, upwind difference scheme and exact solution, numerical false diffusion, hybrid and power-law schemes, total variation diminishing scheme, 2D Convection: Cartesian and complex domain, Unsteady conduction and convection, Stability of the unsteady flow.	10			
5	Finite Volume Method: Introduction to finite volume method (FVM), FVM for diffusion and convection–diffusion problems, discretization of equation for two-dimension, false diffusion, computation of the flow field using stream function and vorticity formulation, solution	10			

Page 1 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3722106

procedure for unsteady flow calculations: SIMPLE, SIMPLEC, PISO, and MAC algorithms, Solution algorithms for pressure–velocity coupling in steady flows

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	20	20	20	20	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, H. K. Versteeg, W. Malalasekera, Pearson Education Ltd.
- 2. Numerical Heat Transfer and Fluid Flow, Suhas V Patankar, Hemisphere Publishing Co.
- 3. Fundamentals of Computational Fluid Dynamics Vol. I, II, III, Hoffman and Chiang, Engineering Education System
- 4. Computational Heat Transfer, K. Murlidhar, G. Biswas, T. Sundarajan, V. Eshwaran, Narosa Publication
- 5. Computational Fluid Dynamics: A Practical Approach, Jiyuan Tu, Guan HengYeoh, Chaoqun Liu, Elsevier
- 6. Principles of Computational Fluid dynamics, Pieter Wesseling, Springer International Edition
- 7. Introduction to Fluid Mechanics, Edward J Shaughnessy, Jr., Ira M Katz, Oxford University press

Course Outcomes:				
Sr.	CO statement	Marks %		
No.		weightage		
CO-1	To develop perception of major theories, approaches and methodologies used in CFD	52		
CO-2	To analyze and apply CFD analysis to solve major engineering design problems involving fluid flow and heat transfer	24		
CO-3	To build up the skills in the implementation of CFD methods (e.g. boundary conditions) in actual engineering using commercial CFD codes	24		

Course Outcomes:

List of Experiments:

- 1. Perform Analytical and Numerical analysis on Pin-Fin to calculate temperature distribution.
- 2. Perform Analytical and Numerical analysis on 1-D steady state heat conduction to calculate temperature distribution along wall thickness.
- 3. Perform Analytical and Numerical analysis on 2-D steady state heat conduction to calculate temperature distribution along wall thickness.
- 4. Perform Analytical and Numerical analysis on 1-D unsteady state heat conduction along the wall thickness.
- 5. Perform Analytical and Numerical analysis on 2-D unsteady state heat conduction along the wall thickness.

Page 2 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3722106

- 6. Perform Analytical and Numerical analysis on steady and unsteady state heat transfer by convection.
- 7. Perform Numerical analysis on flow through pipe with varying Reynolds number.

Equipment / Computational facility:

To perform various Numerical Analyses, high Configuration/Specification computer systems are mandatory.

List of Open Source Software/learning website: OpenFOAM and SCILAB, www.cfd-online.com