GUJARAT TECHNOLOGICAL UNIVERSITY

M.E. in Mechanical (Thermal Engineering) (21) Advanced Internal Combustion Engine SUBJECT CODE: 3712111

Semester i

Type of course: Core Course

Pre re quisite: Nil

Rationale: The course is designed to provide the detailed understanding of internal combustion engines, its performance and emissions under various conditions.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE(E)	PA(M)	PA (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No	Topics	Teaching Hrs	Module Weightage (%)
1	Engine Design and Operating Parameters:	4	6
	Engine operating cycles, spark ignition engine operation, compression		
	ignition engine operation, geometrical properties of reciprocating engine,		
	brake torque and power, mechanical efficiency, mean effective pressure,		
	specific fuel consumption, air/fuel and fuel/air ratio, specific emission and		
	emission index, engine design and performance data		10
2	Reactive Systems:	5	12
	Stoichiometric equation for fuel air reaction, equivalence ratio, enthalpy		
	of formation, first law analysis for steady state reacting system, enthalpy		
	of compustion, internal energy of compustion and heating values,		
	adiabatic combustion temperature, dissociation, chemically reacting gas		
2	mixiure	1	10
3	Ideal models of engine processes, thermodynamic relations for engine	4	10
	recesses constant volume cycle constant pressure cycle basics of		
	simulation in SL and CL Engine cycles real engine cycles		
1	Cos Exchange Drocesses:	1	10
-	Flow through values phase of the flow scavenging in two stroke cycle	-	10
	engines turbulence swirl squish flow in intake manifolds analysis of		
	suction and exhaust processes fuel injection systems supercharging		
	turbocharging		
5	Combustion:	5	12
	Combustion in SI engine with homogeneous air –fuel mixture, ignition	_	
	and flame development, flame propagation and termination in SI engines.		
	octane number, MPFI, combustion in CI engines, ignition delay, cetane		
	number, cold weather problems, fuel spray structure, spray penetration		
	and evaporation		
6	Emission from IC Engines and its Control:	4	10
	Formation of nitrogen oxides, carbon monoxide, hydrocarbon emission in		
	petrol and diesel engines, SI and CI engine particulates, soot formation		

	and control, exhaust gas temperature, catalytic convertor, Indian emission		
	standards for SI and CI engines		
7	Alternate Fuels for IC Engines:	4	8
	Fuels and their properties : hydrogen, bio gas, alcohols, producer gas,		
	LPG, CNG, non edible vegetable oils, nonedible wild oil, NH ₃ as		
	substitute fuel for SI and CI engine, fuel additives, pros and cons of		
	alternate fuels, biodiesel processing and production, fuels rating, coal		
	gasification & liquefaction		
8	Heat Transfer, Friction and Lubrication in IC Engines:	4	10
	Convective and radiative heat transfer, thermal loading on components,		
	friction fundamentals, engine friction components, lubricant requirement,		
	lubrication system		
9	Measurements and Testing of IC Engines:	4	10
	Measurement of friction power, indicated power, brake power, fuel		
	consumption, air consumption, emission, noise, endurance test of IC		
	engines as per Indian standards		
10	Recent Developments in IC Engines:	4	12
	PIV in turbulence measurement, optical methods for flame velocity		
	measurement, new materials for engine components, improved two stroke		
	engines, hybrid engines and vehicles, lean burn engines, stratified charge		
	engines, HCCI engines		

Reference Books:

- 1. Internal Combustion Engine Fundamentals by John B. Heywood, McGraw Hill Education Pvt Ltd.
- 2. Fundamentals of Internal Combustion Engines by H N Gupta, PHI Learning
- 3. Internal Combustion Engine by V Ganeshan, McGraw Hill Education Pvt Ltd.
- 4. Internal Combustion Engine by M L Mathur and R P Sharma, DhanpatRai Publications (P) Ltd.
- 5. Internal Combustion Engines: Applied Thermo-sciences, Colin R Ferguson, John Wiley and Sons.

Course Outcome:

After learning the course the students should be able to:

- Understand the operating characteristics of IC engines.
- Perform a thermodynamic analysis of IC engine cycles.
- Perform a combustion analysis of IC engines.
- Understand the generation of undesirable exhaust emissions and ways to reduce them
- Understand the various heat transfer mechanisms in the engine.

List of laboratory experiments:

- 1. To perform variable speed test of a multi / single cylinder petrol / diesel engine as per IS standard and prepare the curves of (i) BP, IP, FP Vs Speed (ii) Indicated specific fuel consumption Vs Speed
- 2. To find the indicated power on multi cylinder diesel engine / petrol engine by Morse test.
- 3. To find friction power of multi cylinder diesel engine / petrol engine by Willian's line method or motoring method.
- 4. To evaluate comparative performance of CI engine operated with Diesel and Diesel/Biodiesel blend.
- 5. To study about first law analysis for steady state reacting system and combustion stoichiometric.
- 6. To prepare heat balance sheet on multi cylinder diesel engine / petrol engine.
- 7. To study the effect of A/F ratio on the performance of the two stroke single cylinder petrol engine.
- 8. To analyze the exhaust gases emission from single / multi cylinder petrol engine.
- 9. To study and draw the valve timing diagram four stroke petrol and diesel engine.
- 10. To prepare a report on Indian emission norms.

It is desirable to arrange a student visit of any Diesel Power Plant.

Equipments:

- 1. Multi / single cylinder four stroke petrol engine
- 2. Multi / single cylinder four stroke diesel engine
- 3. Multi / single cylinder Two stroke petrol engine
- 4. Multi / single cylinder Two stroke diesel engine
- 5. Exhaust gas analyzer

Websites:

- 1. http://nptel.ac.in/
- 2. http://ocw.mit.edu/
- 3. http://www.catool.org/