

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code: 3722016 SUBJECT NAME: STRUCTURAL DYNAMICS Semester - II

Type of course: Core

Prerequisite: Engineering Mechanics, Structural Analysis and Engineering Mathematics

Rationale: Earthquake, wind, moving loads, traffic, blasting etc. impose time-dependent forces on the structure and thereby induces vibration in the structures. The analysis of structure under such time-dependent forces is carried using theory of structural dynamics. Therefore, understanding of structural dynamics is essential for safe design of Civil Engineering Structures.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE(E)	PA (M)	ESE (V)	PA(I)	
3	0	2	4	70	30	30	20	150

Content:

Sr.	Content	Total	%
No.		Hrs	Weightage
1	Introduction:	03	10
	Objectives, Importance of vibration analysis, Nature of exciting forces, Basic terminology related to vibration – natural frequency, natural period, resonance etc, Dynamic degree of freedom, Assumption to reduce dynamic DoF, Mathematical modeling of dynamic systems.		
2	Single Degree of Freedom System:	13	30
	Free and forced vibration with and without damping, Response to Harmonic Loading, Response to general dynamic loading using Duhamel's integral, Numerical solution of response using Newmark's method & Direct Integration, Concept of response spectrum.		
3	Multiple Degree of Freedom System:	20	40
	Equation of motion of symmetrical and un-symmetrical structures in plan,		
	Natural frequencies and mode shapes of vibrating system, Orthogonality of modes, Dynamic response by Modal Superposition Method, Response Spectrum Analysis, Missing mass correction		
	Introduction to multiple degree of freedom system with distributed mass and loading, Generalized Single Degree of Freedom System		

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code: 3722016

Subject Code: 5722010						
4	Special Topics in Structural Dynamics(Concepts only):	06	20			
	Dynamic effects of Wind loading, Moving loads, Vibrations caused by High Speed Traffic, Blasting and Pile driving, Foundations for industrial machinery, Base-isolation.					

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
20%	30%	20%	20%	5%	5%	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Structural Dynamics and Introduction to Earthquake Engineering, Chopra A. K.
- 2. Dynamics of Structures, Clough R. W. and Penzien J., Mc Graw Hill
- 3. Dynamics of Structures, Humar J. L., Prentice Hall
- 4. Structural Dynamics Theory and Computation, Paz Mario, CBS Publication
- 5. Dynamics of Structures, Hart and Wong
- 6. Vibration of Structures Application in Civil Engineering Design, Smith J. W., Chapman and Hall

Course Outcomes: After learning the course the Students will able to

Sr. No.	CO statement	Marks % weightage
CO-1	Analyze and Interpret dynamics response of single degree freedom system using fundamental theory and experiments	30
CO-2	Analyze and Interpret dynamics response of Multi degree freedom system using fundamental theory and experiments	30
CO-3	Differentiate the effects of various types of dynamic loads	10
CO-4	Use structural engineering software for dynamic analysis	15
CO-5	Perform & interpret the results of various experiments on models to understand structural behavior of symmetrical & un-symmetrical structures in plan & elevation	15

List of Experiments:

1. Study of response of various SDoF systems with variable mass/stiffness (E,I & L)

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code: 3722016

- 2. Study of response of MDoF systems though mode shapes
- 3. Study of response of MDoF structural systems (Model) with vertical irregularity e.g soft storey (stiffness), mass etc
- 4. Study of response of SDoF / MDoF structural systems (Model) with plan irregularity e,g re-entrant corner, mass etc
- 5. Study of response of structural systems (Model) during pounding of structures
- 6. Study the response of above experiments through structural engineering software dealing with dynamic analysis
- 7. Minimum 15 problems from above topics

Major Equipment:

- 1. Shake table,
- 2. Data acquisition System with required sensors to measure response of structural system (Model)
- 3. Spring Mass Model SDoF system
- 4. Mode Shape Model MDoF System
- 5. Model of structure with plan irregularities
- 6. Model of structure with vertical irregularities
- 7. Model of structures to exhibit pounding
- 8. Structural engineering software

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/
- 2. http://ocw.mit.edu/courses/civil-and-environmental-engineering/
- 3. opensees.berkeley.edu/
- 4. www.nicee.org
- 5. http://www.earthquakeinfo.org/
- 6. www.eeri.org/
- 7. www.earthquakeengineering.com/
- 8. <u>www.curee.org</u>
- 9. Non-lin software