

GUJARAT UNIVERSITY BCA III SYLLABUS

COURSE TITLE	Data Structures
COURSE CODE	CC-202
COURSE CREDIT	3
Session Per Week	4
Total Teaching Hours	40 HOURS

AIM

This course introduces students to get the detail knowledge of Basic data structures, representations, building and use of those data structures in different applications in real world.

LEARNING OUTCOMES

Students would be able-

- 1) To understand the concept, role and importance of Data.
- 2) To recognize the use of Data Structure for real applications.
- 3) To identify the key differences between various data structures.
- 4) To comprehend the type of data structure to apply according to the scenery of applications.
- 5) To be aware of the real building of the data structure using various programming languages.
- 6) To implement the various operations of data structures by using algorithms.
- 7) To deal with every tiny elements of the Data Structures.

DETAIL SYLLABUS

UNIT	TOPIC / SUB TOPIC	TEACHING HOURS
	Introduction to Data Structures, Arrays & Linked List	10
	• Introduction	
	o Data o Data Types	
	 Abstract Data Types (Primitive) User-Defined Data Types (Non-Primitive) 	2
1	o Data Structures: o Definition	
	o Classification of Data Structures and details of each classifications	
	• Array	
	o Definition	1
	o Mapping	*
	o Sparce Matrix	

	• Linked list	
	o Comparison of Array and Linked List	
	o Types of Linked Lists	
	o Representation of Linked Lists	
	o Operations on Doubly Linked Lists (Algorithm and Explanation)	
	■ Creation	
	■ Traversal	
	Insertion	2
	i. At Front	
	ii. In Between (After and Before)	
	iii. At End	
	■ Deletion	
	i. From Beginning	
	ii. From Between	
1	iii. From End	
	Searching:	
	o Introduction to Searching	
	o Searching Techniques:	2
	■ Sequential Search	
	■ Binary Search	
	• Sorting:	
	o Introduction to Sorting	
	o Sorting Techniques:	
	■ Bubble sort	
	■ Selection sort	3
	■ Insertion sort	
	■ Quick sort	
	■ Merge sort	
	Stack & Queues	10
	• Stack:	
	o Introduction (Idea of the Stack)	
	o Operations of the Stack (Algorithm and Explanation)	
	o Implementation of the Stack (Using Array and linked list)	
2	o Applications of the Stack:	5
	■ Definition: Reverse and Polish	
	■ Conversion: Infix to Postfix using manually and stack for parenthesis	
	and Non-parenthesis (with Algorithm)	
	■ Recursion(Definition)	
	• Queue:	
	o Introduction (Idea of the Queue)	
	o Types of Queue	5
	o Operations of Simple and Circular Queue (Algorithm and Explanation)	
	o Implementation of the Queue (Using Array and Linked list)	
	- mp more and a second (some nine)	

	Tree	10
	• Introduction	
1	Terminology	
	• Binary Tree:	
	o Definition	
	o Representation of Binary Tree	
	o Operation on Binary Tree	5
	■ Creation	3
	■ Insertion	
	■ Deletion	
	■ Traversal (Pre-Order, In-Order and Post- Order) Ecluding general	
3	binary tree	
	■ Conversion from (Pre, In or Post) into Binary Tree	
	• Types of Binary Tree	
	o Full Binary Tree	
	o Complete Binary Tree	
	o Binary Search Tree	
	o Expression Tree	5
	o Threaded Binary Tree	
	o Heap Tree	
	o Height Balanced Tree (AVL Tree)	
	o B-Tree	
	Graph	10
	• Introduction	
	Basic Terminology	
	Representation of Graph	
_	o Adjacency Matrix (Array)	
4	o Adjacency Linked	6
	• Traversal of Graph	
	o Breadth First Traversal (Algorithm and Tracing)	
	o Depth First Traversal (Algorithm and Tracing)	
	Application of Graph	
	o Spanning Tree	
	■ Mnimum Spanning Tree (BFS and DFS)	
	■ Prim's Algorithm	4
	■ Kruskal's Algorithm	
	o Shortest Path Algorithm	
	o Dijkstra's Algorithm	

TEXT BOOK:

Data and File Structures using C Publisher: Oxford

By Reema Thareja

- Chapter-4 (4.1, 4.2, 4.3) Introduction to Data Structures
- Chapter-5 (5.1, 5.2, 5.3, 5.6.5, 5.16) Array and Searching
- Chapter-8 (8.2, 8.7) Linked List
- Chapter-9 (9.1, 9.3, 9.4, 9.5, 9.7, 9.8, 9.11, 9.12, 9.13, 9.14, 9.16[Only Definition],9.17[Definition and 9.17.1]) Stack & Queues
- Chapter-10 (10.1, 10.2, 10.4[excluding 10.4.4]) Tree
- Chapter-11 (11.1, 11.2.2, 11.2.3, 11.3, 11.4 [Definition and 11.4.2], 11.6 [Definition and 11.6.2]) Tree
- Chapter-12 (12.1[Definition and 12.1.1, 12.1.2]) Tree
- Chapter-13 (13.1, 13.4, 13.5, 13.7[excluding 13.7.5]) Graph
- Chapter-14 (14.1, 14.2, 14.3, 14.4, 14.5, 14.6) Sorting

REFERENCE BOOKS:

1. Data Structures and Algorithms in C++ Publisher: Dreamtech

By B. M. Harvani

2. Magnifying Data Structures Publisher: PHI

By: Arpita Gopal

3. Data Structures using C & C ++ Publisher: Wiley-India

By: Rajesh K. Shukla

4. Introduction to Data Structures in C Publisher: Pearson Education

By: Ashok N. Kamthane

5. Data Structures Using C Publisher: Pearson Education By: A. K Sharma

REQUIRED SOFTWARE/S

Turbo c

GUJARAT UNIVERSITY BCA III SYLLABUS

COURSE TITLE	Data Structures Practicals
COURSE CODE	CC-206
COURSE CREDIT	3
Session Per Week	3
Total Teaching Hours	40 HOURS

AIM

Student will be provided with practical knowledge of basic data structures, representation, building and use of various data structures in different applications in real world.

LEARNING OUTCOMES

- 1.) To gain the knowledge of various advanced data structure topics practically.
- 2.) To develop skills for effective use of the pointers and structures in programming.

Note

The students are expected to write program in "C or C++ Programming "languages unit wise as given below. The list in each unit is indicative only and **may or may not be asked in the examination.** The programs given below are only sample example for practice in lab.

DETAIL SYLLABUS

UNIT	TOPIC / SUB TOPIC	TEACHING HOURS
	Linked List	10
	1. Write program to implement following operations using	
	Singly link list	
	• Insert at first	
	• Insert at Last	
	Insert at specified location (Before or After the Node)	
1	Delete from first	
	Delete from last	4
	Delete any specified node	
	Traversal	
	• Sorting	
	• Splitting	
	Merging	
	 Counting Operations (Total no. of nodes, even and odd no. of nodes) 	

		1
	2. Write program to implement following operations using Doubly link list	
	• Insert at first	
	• Insert at Last	
	• Insert at specified location (Before or After the Node)	
	Delete from first	
1	• Delete from last	6
	Delete any specified node	
	• Traversal	
	• Sorting	
	• Splitting	
	• Merging	
	• Counting Operations(Total no. of nodes, even and odd no. of nodes)	
	Searchin and Sorting	10
	1. Write a program to implement sequential search.	2
	2. Write a program to implement binary search.	_
2	3. Write a program to implement bubble sort.	
	4. Write a program to implement selection sort	
	5. Write a program to implement merge sort	8
	6. Write a program to implement quick sort	
	7. Write a program to implement insertion sort.	
	Stack	10
3	 Stack: 1. Write a program to implement following operations in stack Using array and Linked List. PUSH POP PEEP 2. Write a program to implement Evaluation of given postfix expression. 	5
	3. Write a program to implement conversion of infix	
	expression into postfix expression (parentheses and non parentheses). 4. Write a program to implement recursion.	5
	5. Write a program to implement recursion.	
	J. Write a program to reverse the string using the stack.	
	Queue and Tree	10
	Queue:	
	1. Write a program to implement Simple Queue operations	
4	using Array and Linked List.	
	• ENQUEUE	
	• DEQUEUE	
	• Traversal (display)	5
	2. Write a program to implement Circular Queue operations	
	Using Array.	
	• ENQUEUE	
	• DQUEUE	
	• Traversal (display)	

TEXT BOOK:

Data and File Structures using C Publisher: Oxford By Reema Thareja

REFERENCE BOOKS:

1. Data Structures and Algorithms in C++ Publisher: Dreamtech

By B. M. Harvani

2. Magnifying Data Structures Publisher: PHI

By: Arpita Gopal

3. Data Structures using C & C ++ Publisher: Wiley-India

By : Rajesh K. Shukla

4. Introduction to Data Structures in C Publisher: Pearson Education

By: Ashok N. Kamthane

5. Data Structures Using C Publisher: Pearson Education By : A. K Sharma

REQUIRED SOFTWARE/S

Turbo c