GUJARAT UNIVERSITY BCA II SYLLABUS | COURSE TITLE | Discrete Mathematics | |----------------------|----------------------| | COURSE CODE | CC-111 | | COURSE CREDIT | 3 | | Session Per Week | 4 | | Total Teaching Hours | 40 HOURS | ## AIM The objective of this course is to present the foundations of many basic computer related concepts and provide a coherent development to the students for the courses like fundamentals of Computer Organization, RDBMS, Data Structures, Analysis of Algorithms, Artificial Intelligence, Computer Graphics and others. ## **LEARNING OUTCOMES** On the completion of the course students will: - 1. To become reasonably good at problem solving and algorithm development. - 2. Students also enhance their ability to think logically and mathematically. ## **DETAIL SYLLABUS** | UNIT | TOPIC / SUB TOPIC | TEACHING
HOURS | |------|--|-------------------| | | Groups | 10 | | 1 | □ Binary operations with properties □ Algebraic structure □ Semigroups and Monoids □ Definition of group and examples □ Order of a group and order of an element | 2 | | | □ Abelian and cyclic group□ Groups < Zn, + n > & < Zp, *p >□ Sub-group | 4 | | | □ Lagrange's Theorem (without proof)□ Permutation group | 4 | | | Relations and Ordering | 10 | | | □ Basic concept of binary relation □ Total no. of distinct relations □ Relation matrix and the graph of a relation | 2 | | | |--|---|----|--|--| | 2 | □ Basic Property of binary relations in a set □ Equivalence relations and equivalence classes □ Covering and partition of a set □ Partial ordering and partially ordered set | 4 | | | | | □ Comparable elements , Chain □ Cover of an element, Hasse diagram □ Least, Greatest, Maximal, Minimal elements □ Lower and upper bounds of posets | 4 | | | | | Lattices and Boolean Algebra | 10 | | | | 3 | □ Introduction to lattice □ Lattices as partially ordered sets □ Some properties of lattices □ Sub-lattices | 2 | | | | | □ Types of lattices like complete, bounded, distributive and complemented lattice □ Definition and important properties of a Boolean algebra □ Boolean subalgebra | 4 | | | | | ☐ Isomorphic Boolean algebras (graphically) ☐ Boolean expressions and their equivalence ☐ Max/Min terms, canonical forms | 4 | | | | | Graph theory | 10 | | | | 4 | □ Basic concepts of Graph theory □ Paths, Reachability, and Connectedness □ Matrix representation of graphs □ Trees | 2 | | | | TEXT BOOK/S: | | | | | | J.P. Tremblay and R. Manohar McGraw-
Hill Publication | | | | | | REFER | REFERENCE BOOKS: | | | | 1. Discrete Mathematics Publisher: Oxford University Press By Swapankumar Chakaborty, Bikas Kanti Sarkar 2. Discrete Mathematics Publisher: Cengage Learning By D.S. Malik, M.K.Sen