

GUJARAT UNIVERSITY BCA II SYLLABUS

COURSE TITLE	Discrete Mathematics
COURSE CODE	CC-111
COURSE CREDIT	3
Session Per Week	4
Total Teaching Hours	40 HOURS

AIM

The objective of this course is to present the foundations of many basic computer related concepts

and provide a coherent development to the students for the courses like fundamentals of Computer Organization, RDBMS, Data Structures, Analysis of Algorithms, Artificial Intelligence, Computer Graphics and others.

LEARNING OUTCOMES

On the completion of the course students will:

- 1. To become reasonably good at problem solving and algorithm development.
- 2. Students also enhance their ability to think logically and mathematically.

DETAIL SYLLABUS

UNIT	TOPIC / SUB TOPIC	TEACHING HOURS
	Groups	10
1	 □ Binary operations with properties □ Algebraic structure □ Semigroups and Monoids □ Definition of group and examples □ Order of a group and order of an element 	2
	□ Abelian and cyclic group□ Groups < Zn, + n > & < Zp, *p >□ Sub-group	4
	□ Lagrange's Theorem (without proof)□ Permutation group	4
	Relations and Ordering	10

	 □ Basic concept of binary relation □ Total no. of distinct relations □ Relation matrix and the graph of a relation 	2		
2	 □ Basic Property of binary relations in a set □ Equivalence relations and equivalence classes □ Covering and partition of a set □ Partial ordering and partially ordered set 	4		
	 □ Comparable elements , Chain □ Cover of an element, Hasse diagram □ Least, Greatest, Maximal, Minimal elements □ Lower and upper bounds of posets 	4		
	Lattices and Boolean Algebra	10		
3	□ Introduction to lattice □ Lattices as partially ordered sets □ Some properties of lattices □ Sub-lattices	2		
	 □ Types of lattices like complete, bounded, distributive and complemented lattice □ Definition and important properties of a Boolean algebra □ Boolean subalgebra 	4		
	 ☐ Isomorphic Boolean algebras (graphically) ☐ Boolean expressions and their equivalence ☐ Max/Min terms, canonical forms 	4		
	Graph theory	10		
4	 □ Basic concepts of Graph theory □ Paths, Reachability, and Connectedness □ Matrix representation of graphs □ Trees 	2		
TEXT BOOK/S:				
J.P. Tremblay and R. Manohar McGraw- Hill Publication				
REFER	REFERENCE BOOKS:			

1. Discrete Mathematics

Publisher: Oxford University Press
By Swapankumar Chakaborty, Bikas Kanti Sarkar
2. Discrete Mathematics

Publisher: Cengage Learning

By D.S. Malik, M.K.Sen