LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Computer Engineering (701)

Bachelor of Engineering (B.E.) – Semester – IV

Course Code:	017013491 Teaching Scheme						
Course Name:	Discrete Mathematics		Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Category of Course: Professional Core Course (PCC)		2	1	0		40
Prerequisite Course:	Mathematics - II (017011291), Data Structures (017013292)		3	1	U	4	40

	Syllabus						
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teaching Hours			
01	Set Theory1.1 Basic Concepts of Set Theory: Sets, Methods of Describing a Set: Roster Method and Set Selector/ Set Builder Method, Some Special Sets, Subsets, Proper Subsets, Equality of Sets, Null Set, Universal Set, Ordered Pair, Cartesian Product, Power Set, Examples.1.2 Venn Diagrams, Operations on Sets: Union of sets, Intersection of sets, Disjoint Sets, Difference of sets, Symmetric difference of sets, Complement of a set, Examples.1.3 Some Basic Set Identities: Idempotent Laws, Commutative	 Basic Concepts of Set Theory (017013491-Unit-01)	Basics of Automata (017013492-Unit -1)	- 5 (8%)			
	Laws, Associative Laws, Distributive Laws, De Morgan's Laws, Absorption Laws, Double Complement, Examples. 1.4 Partitions of a Set, Cardinality of a finite set, Principle of Inclusion and Exclusion, Examples.	Laws, s Laws, ciple of					
	Functions & Counting						
	2.1 Functions/ Mappings, Representation by diagram, Examples.	-		_			
	function, Function as a set of ordered pairs, Identity Function, Constant Function, Examples.	_		4 (9%)			
02	2.3 Types of Functions: One to one Function(Injective Mapping), Many to One Function, Into Function,Onto Function (Surjective Mapping), One One Onto Function(Bijective Mapping), Inverse Function, Examples.	Set Theory (017013491-Unit- 01)					
	2.4 Composition (Product) of Functions, Examples.2.5 Pigeonhole Principle, Extended Pigeonhole Principle, Examples			_			
	2.6 Permutation and Combination, Binomial Co-efficient, Examples.			_			
	Propositional Logic						
	3.1 Logic, Statements (Propositions), Open Statement, Truth Values, Examples.						
03	3.2 Logical Connectives: Conjunction, Disjunction, Negation, Conditional Connectives, Biconditional, Contrapositive Implication, Exclusive Disjunction, Inverse, Examples.	3.2 Logical Connectives: Conjunction, Disjunction, Negation, Conditional Connectives, Biconditional, Contrapositive Implication, Exclusive Disjunction, Inverse, Examples.					
	3.3 Construction of Truth tables, Examples.			(10%)			
	 3.4 Tautology, Contradiction, Contingency, Examples. 3.5 Logical Equivalence, Examples, Logical Identities: De Morgan's Laws, Associative Laws, Commutative Laws, Idempotent Laws, Double Negation, Distributive Laws, Absorption Laws, Examples. 			_			
	Propositional and Predicate Logic						
04	4.1 Normal Forms, Disjunctive Normal Forms (DNF), Conjunctive Normal Forms (CNF), Examples with and without using truth table.	Propositional Logic		4 (8%)			
	4.2 Arguments, Valid argument, Fallacy arguments, Examples.	(01/013491-Unit-03)					
	4.4 Quantifiers: Universal Quantifier and Existential Quantifier, Examples.		_				
	Recurrence Relations						
05	 5.1 Recursion, Recurrence Relation Introduction. 5.2 Linear Recurrence Relation with constant co-efficients, Characteristic equation, Homogeneous Solution (distinct and equal roots), Examples. 	Higher Order Ordinary Differential Equations (017011291-Unit-09)		3 (7%)			
	5.3 Non-Homogeneous Linear Recurrence Relation, Particular Solution for given right hand sides, Total Solution, Examples.						

	Deletions			I			
	Relations 6.1 Binary Relation, Domain, Range, Relation Matrix,	Set Theory (017013491-Unit-					
	Examples. 6.2 Graphical representation of a relation (Digraph) Examples	S. 01)					
	6.3 Inverse relation, Complement of a relation, Composition of			4			
06	relations, Relation in a set, Identity relation, Universal relation in a set, Void relation, Examples.			4 (11%)			
	6.4 Types of relation: Reflexive relation, Symmetric relation,						
	Examples.						
	6.5 Equivalence Relation, Examples.						
	conventional method, Warshall's Algorithm, Examples.						
	Partial Ordering						
-	7.1 Partial Order relation, Examples. 7.2 Partial Ordered Set (POSET), Examples.						
	7.3 Representation of POSET, Construction of Hasse Diagram,						
	Examples. 7.4 Chains, Anti- Chains, Maximal and Minimal Elements,			5			
07	Examples.	Polations (017012401 Unit 06)		(13%)			
	Greatest Lower Bound (GLB), Examples.	Kelations (017013491-0111-00)					
	7.6 Lattice, Lattice Operators, Sub Lattice, Properties of						
	7.7 Types of Lattices: Bounded Lattice, Distributive Lattice,			-			
	Complemented Lattice, Examples. 7 8 Boolean Algebra, Examples						
	Graph Theory						
	8.1 Graphs, Multigraphs, Pseudographs, Simple graphs, Degree		For low of the state of the				
	Directed graphs, In degree and out degree of a vertex,		(017013591-Unit- 5.1)				
	Underlying graph of a graph, Examples.						
00	complete graph, Bipartite graph, Complete bipartite graph, Star						
	graph, Wheel graph, Subgraphs, Spanning subgraphs, Complement of a subgraph Null subgraph Complement of a						
	graph, Path, Simple path, Elementary path, Simple circuit,			4			
08	Elementary circuit, Planar graph, Examples. 8.3 Operations on graphs: Union of graphs, Intersection of		Fundamental Graph Algorithm	(12%)			
	graphs, Ring sum of graphs, Removal of an edge, Removal of a		(017013591-Unit- 5.2, 5.3)	_			
	8.4 Hand Shaking Lemma, Examples, Isomorphic Graphs,						
	Examples. 8.5 Eulerian path. Eulerian circuit. Eulerian graph. Hamiltonian						
	path, Hamiltonian circuit, Hamiltonian graph, Examples.						
	8.6 Dijkstra's Algorithm, Floyd Warshall's Algorithm, Travelling Salesman Problem, Nearest Neighbour Method,						
	Examples.						
	9.1 Reachability, Reachable set, Geodesics, Distance, Connected						
	graphs, Disconnected graphs, Strongly Connected graphs,						
	Adjacency Matrix, Path Matrix, Examples.						
	9.2 Tree Introduction, Forest, Leaf, branch node, Properties of			4			
09	9.3 Eccentricity of a vertex, level and height of a tree, radius	a tree, radius					
	and diameter of a tree, Center of a tree, Examples. 9.4 m-ary tree, regular m-ary tree, Binary tree, regular binary	Tree (017013292-Unit-08)					
	tree, Examples.	amples.					
	9.5 Prefix Code, Optimal tree, Huffman Coding, Examples.		Unit- 6.1, 6.2, 6.3)				
	9.6 Spanning tree, Minimum spanning tree, Prim's Algorithm, Kruskal's Algorithm, Examples,						
	Algebraic Structures						
	10.1 Binary operation on a set, Composition table, Algebraic						
	10.2 Properties of Binary Operations: Closure, Associative,			4 (11%)			
10	Commutative, Existence of Identity, Existence of Inverse, Examples						
۸v	10.3 Groupoid, Semi Group, Monoid, Group, Abelian group,						
	Examples. 10.4 Addition and Multiplication modulos. Group Permutations						
	Examples.	mples.					
	10.5 Subgroup, Examples.						

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)							
L:	L: 3 T: 1 P: 0						
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject.							
Each Test will be of 2	5 Marks.						
Each Test Syllabus W	/eightage: Range sho	ould be 20%	⁄o - 30%				
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage		
Theory			MCQ	20%	20		
Theory	4		Theory Descriptive	0%	0		
Theory			Formulas and Derivation	0%	0		
Theory		-	Numerical	80%	80		
Expected Theory %	100%	4	Calculated Theory %	100%	100		
Practical			Individual Project	0%	0		
Practical			Group Project	0%	0		
Practical	0		Internal Practical Evaluation (IPE)	0%	0		
Practical			Viva	0%	0		
Practical			Seminar	0%	0		
Expected Practical %	0%		Calculated Practical %	0%	0		
Overall %	100%			100%	100		

Cours	se Outcome
	Upon completion of the course students will be able to
1	Understand the basic principles of sets, operations in sets and Principle of Inclusion and Exclusion. Types of functions, domain and range of a function, perform the composition of functions and apply counting Write an argument using logical notation and determine if the argument is or is not valid. To simplify and evaluate basic logic statements including compound statements, implications, inverses, converses, and contra positives using truth tables and the properties of logic.
2	Introduction to Normal Forms. To express a logic sentence in terms of predicates, quantifiers, and logical connectives. Be familiar with recurrence relations. Apply relations and to determine their properties.
3	Introduction to Partial Order Relation. Introduction to Graph theory, Types of Graphs, Operations on graphs, understand the shortest path algorithms.
4	Introduction to Reachability, Properties of Tree and algorithms on spanning Tree. Use the properties of algebraic structures.
Sugge	ested Reference Books
1	J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science,
	Tata McGraw-Hill,1997.
2	S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd
	Ed., Tata McGraw-Hill,1999.
3	K. H. Rosen, Discrete Mathematics and its applications, Tata McGraw-Hill, 6th Ed., 2007.
4	David Liben-Nowell, Discrete Mathematics for Computer Science, Wiley publication, July 2017.
5	Eric Gossett, Discrete Mathematics with Proof, 2nd Edition, Wiley publication, July 2009.

List of	List of Open Source Software/Learning website			
1	https://nptel.ac.in			