



**Lok Jagruti Kendra University**  
University with a Difference

# **Diploma in Artificial Intelligence & Machine Learning**



**Course Code: 025090402**  
**Computer System Organization**

|                                |                              |                                                       |     |                    |           |
|--------------------------------|------------------------------|-------------------------------------------------------|-----|--------------------|-----------|
| <b>Programme / Branch Name</b> |                              | Diploma in Artificial Intelligence & Machine Learning |     |                    |           |
| <b>Course Name</b>             | Computer System Organization |                                                       |     | <b>Course Code</b> | 025090402 |
| <b>Course Type</b>             | HSSC                         | BSC                                                   | ESC | PCC                | OEC PEC   |

**Legends:** HSSC: Humanities and Social Sciences Courses  
 ESC: Engineering Science Courses  
 OEC: Open Elective Courses

BSC: Basic Science Courses  
 PCC: Program Core Courses  
 PEC: Program Elective Courses

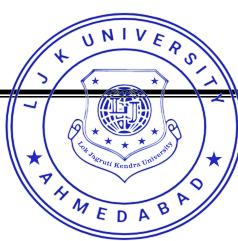
## 1. Teaching and Evaluation Scheme

| Teaching Hours / Week / Credits |          |          |                     | Evaluation Scheme |                 |                 |              |
|---------------------------------|----------|----------|---------------------|-------------------|-----------------|-----------------|--------------|
| <b>L</b>                        | <b>T</b> | <b>P</b> | <b>Total Credit</b> | <b>CCE</b>        | <b>SEE (Th)</b> | <b>SEE (Pr)</b> | <b>TOTAL</b> |
| 3                               | 0        | 0        | 3                   | 50                | 50              | -               | 100          |

**Legends:**

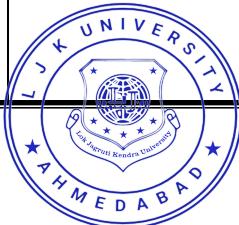
|             |                                       |              |
|-------------|---------------------------------------|--------------|
| L: Lectures | T: Tutorial                           | P: Practical |
| CCE:        | Continuous & Comprehensive Evaluation |              |
| SEE (Th):   | Semester End Evaluation (Theory)      |              |
| SEE (Pr):   | Semester End Evaluation (Practical)   |              |

## 2. Prerequisites


- ✓ Fundamentals of Digital electronics
- ✓ Knowledge of digital circuits and digital components
- ✓ Basics of Computers architecture and I/O peripherals.

## 3. Rationale

Understand the architecture and organization of digital computer with its various processing units and components, memory organization and input-output peripherals organization.


## 4. Objectives

- ✓ After successful completion of this course the students will be able to
  - Understand the basics of digital circuits and digital components of Computer Architecture.
  - Acquire knowledge on basic computer organization and design and introduction to advanced processor architecture.
  - Understand the different types of memory also explains about the associative memory, cache memory and virtual memory.
  - Explain data transfer and Input / Output module.



## 5. Contents

| Unit No. | Unit Name                                           | Topics                                                                                                                                                                                                                                                                                                                                                                            | Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % Weightage | Hours |
|----------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| 1        | <b>Organization and Design of Digital Computers</b> | 1.1. Overview of computers and basics of Digital Electronics-Flip Flops<br>1.2. Registers, Shift Registers<br>1.3. Register Transfer Notations<br>1.4. Register Transfer<br>1.5. Bus Transfer and Memory Transfer<br>1.6. Arithmetic Micro-Operations<br>1.7. Logic Micro-Operations<br>1.8. Shift Micro operations<br>1.9. Arithmetic Logic Shift Unit                           | <ul style="list-style-type: none"> <li>Deals with digital components, like Flip-flops, and various digital circuits.</li> <li>Explain registers and register transfers language.</li> <li>Describe various Arithmetic, Logic and Shift micro-operations.</li> <li>Understanding Arithmetic Logic Shift Unit - ALU</li> </ul>                                                                                                                                               | 20          | 08    |
| 2        | <b>Basic Computer Organization</b>                  | 2.1. Instruction Codes<br>2.2. Computer Registers - Accumulator, Data Register, Address Register, Program Counter, Memory Data Register, Index register, Memory Buffer Register<br>2.3. Computer Instructions<br>2.4. Timing and Control<br>2.5. Instruction Cycle<br>2.6. Memory Reference Instructions<br>2.7. Input-Output and Interrupt<br>2.8. Complete Computer Description | <ul style="list-style-type: none"> <li>Understand various fields of instruction code and list various instruction formats</li> <li>Inspecting types of registers and understand role of each register</li> <li>Observing control timing signals diagram for the given instruction</li> <li>Understanding phases of instruction cycle</li> <li>Focus on Input-output and interrupt and its working</li> <li>Observing functional block diagram of BASIC computer</li> </ul> | 25          | 09    |
| 3        | <b>Central Processing Unit, Pipelining</b>          | 3.1. General Register Organization<br>3.2. Stack Organization<br>3.3. Instruction Formats<br>3.4. Addressing Modes<br>3.5. Data Transfer and manipulation<br>3.6. Program Control<br>3.7. CISC – RISC                                                                                                                                                                             | <ul style="list-style-type: none"> <li>Exploring General Register organization.</li> <li>Focus on various stack organizations of CPU.</li> <li>Exploring various instruction and instruction format.</li> </ul>                                                                                                                                                                                                                                                            | 25          | 10    |



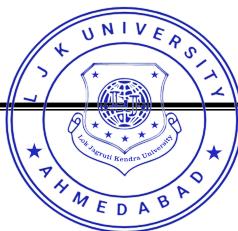
|   |                            |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |                    |           |
|---|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
|   |                            | 3.8. Parallel Processing:<br>Flynn's Classification<br>3.9. Pipeline processing                                                                                                                              | <ul style="list-style-type: none"> <li>Discuss various addressing modes used in computers.</li> <li>Understanding data transfer and data manipulation instruction.</li> <li>Discuss program control instructions.</li> <li>Compare and differentiate RISC and CISC Architecture.</li> <li>Understanding advantage of pipelining in CPU Design.</li> </ul> |                    |           |
| 4 | <b>Input/Output Module</b> | 4.1. Input-Output Interface<br>4.2. Asynchronous Data Transfer<br>4.3. Strobe Control<br>4.4. Handshaking<br>4.5. Asynchronous Serial Transfer<br>4.6. Modes of Data Transfer<br>4.7. Input-Output Processor | <ul style="list-style-type: none"> <li>Defining I/O interface</li> <li>Understanding methods of Asynchronous Data transfer</li> <li>Describe Asynchronous Serial Transfer</li> <li>Exploring different modes of data transfer</li> <li>Input Output processor and its organization</li> </ul>                                                             | 15                 | 7         |
| 5 | <b>Memory System</b>       | 5.1. Memory Units and Classifications<br>5.2. Memory Hierarchy<br>5.3. Main Memory<br>5.4. Auxiliary Memory<br>5.5. Associative Memory<br>5.6. Cache Memory<br>5.7. Virtual memory                           | <ul style="list-style-type: none"> <li>Understand memory hierarchy and memory classification</li> <li>Understanding concepts of main memory, auxiliary memory, Associative Memory, cache memory and virtual memory</li> </ul>                                                                                                                             | 15                 | 8         |
|   |                            |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           | <b>Total Hours</b> | <b>42</b> |

## 6. Suggested Specification Table for Evaluation Scheme

| Unit No. | Unit Name                                    | Distribution of Topics According to Bloom's Taxonomy |     |       |     |     |      |
|----------|----------------------------------------------|------------------------------------------------------|-----|-------|-----|-----|------|
|          |                                              | R %                                                  | U % | App % | C % | E % | An % |
| 1        | Organization and Design of Digital Computers | 35                                                   | 30  | 25    | -   | 5   | 5    |
| 2        | Basic Computer Organization                  | 30                                                   | 30  | 30    | -   | 5   | 5    |
| 3        | Central Processing Unit, Pipelining          | 30                                                   | 35  | 25    | -   | 5   | 5    |
| 4        | Input/Output Module                          | 35                                                   | 30  | 25    | -   | 5   | 5    |
| 5        | Memory System                                | 35                                                   | 25  | 30    | -   | 5   | 5    |

**Legends:** R: Remembering U: Understanding  
 App: Applying C: Creating  
 E: Evaluating An: Analyzing

## 7. Text Books


- 1) Computer System Architecture – M. Morris Mano, Latest Edition, Prentice-Hall Inc. publication.

## 8. Reference Books

- 1) Computer Architecture – Behrooz Parhami, Latest Edition, Oxford publication.
- 2) Computer Organization and Architecture Designing for Performance – William Stallings, Latest Edition, Pearson Education.

## 9. Open Sources (Website, Video, Movie)

- 1) <https://digimat.in/limesurvey/index.php/106105163>
- 2) <http://www.cs.iit.edu/~virgil/cs470/Book/>

