



**Lok Jagruti Kendra University**  
University with a Difference

# **Diploma in Electrical Engineering**



**Course Code:025070305**  
**PCB Design Lab**

|                                |                |                                   |     |     |                    |           |
|--------------------------------|----------------|-----------------------------------|-----|-----|--------------------|-----------|
| <b>Programme / Branch Name</b> |                | Diploma in Electrical Engineering |     |     |                    |           |
| <b>Course Name</b>             | PCB Design Lab |                                   |     |     | <b>Course Code</b> | 025070305 |
| <b>Course Type</b>             | HSSC           | BSC                               | ESC | PCC | OEC                | PEC       |

**Legends:** HSSC: Humanities and Social Sciences Courses  
 ESC: Engineering Science Courses  
 OEC: Open Elective Courses

BSC: Basic Science Courses  
 PCC: Program Core Courses  
 PEC: Program Elective Courses

## 1) Teaching and Evaluation Scheme

| Teaching Hours / Week / Credits |   |   |              | Evaluation Scheme |          |          |             |
|---------------------------------|---|---|--------------|-------------------|----------|----------|-------------|
| L                               | T | P | Total Credit | CCE               | SEE (Th) | SEE (Pr) | Total Marks |
| 0                               | 0 | 4 | 2            | 50                | -        | 50       | 100         |

**Legends:**

L: Lectures      T: Tutorial      P: Practical  
 CCE:      Continuous & Comprehensive Evaluation  
 SEE (Th):      Semester End Evaluation (Theory)  
 SEE (Pr):      Semester End Evaluation (Practical)

## 2) Prerequisite

- ✓ Basic knowledge of Electronic Components.

## 3) Rationale

This is a basic course for designing of PCB using software. PCB (Printed Circuit Board) designing is an integral part of each electronics product and this program is designed to make students capable to design their own projects PCB up to industrial grade.

## 4) Objectives

- ✓ To familiarize the electronic components and basic electronic instruments.
- ✓ To make familiar with PCB design and various processes involved.
- ✓ To provide in depth core knowledge in the fabrication of Printed.
- ✓ To provide the knowledge in assembling and testing of the PCB based electronic circuits.

## 5) Contents

| Unit No. | Topics                  | Sub-Topics                                                                                                                    | Learning Outcomes                                                                                                                                                                                                                                                                                                                              | % Weightage | Hours |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| 1        | Schematic Capture       | 1.1. Introduction to OrCAD<br>1.2. Schematic capture<br>1.3. Schematic to layout transfer<br>1.4. Layout Printing             | <ul style="list-style-type: none"> <li>Introduction to OrCAD schematic capture tool, Simulation of simple electronic circuit.</li> <li>Schematic to layout transfer, Layout Printing.</li> </ul>                                                                                                                                               | 10          | 4     |
| 2        | PCB Design Process      | 2.1. Conception Level Introduction<br>2.2. Checking foot prints of the components<br>2.3. Tracing of Track, holes and layout. | <ul style="list-style-type: none"> <li>Conception Level Introduction: Specifying Parts, Packages and Pin Names, Libraries and</li> <li>Checking foot prints of the components, Part list, Netlist, Making Netlist Files,</li> <li>Routing Traces, Modifying Traces, Mounting Holes, Adding Text, PCB Layout, DRC, Pattern Transfer.</li> </ul> | 10          | 4     |
| 3        | PCB Fabrication Process | 3.1. Etching<br>3.2. Cleaning<br>3.3. Drying<br>3.4. Drilling                                                                 | <ul style="list-style-type: none"> <li>Chemical process of the PCB</li> <li>Final PCB processing</li> </ul>                                                                                                                                                                                                                                    | 10          | 6     |
| 4        | Assembling and Testing  | 4.1. Assembling of components<br>4.2. Testing of PCB                                                                          | <ul style="list-style-type: none"> <li>Identifying the components and its location on the PCB, soldering of active and passive components</li> <li>Testing the assembled circuit for correct functionality.</li> </ul>                                                                                                                         | 10          | 6     |
| 5        | Mini Projects           | 5.1. Assembling of electronic circuit/system on PCB, test and show the functioning. (Any Five)                                | <ul style="list-style-type: none"> <li>Household or lab work usage projects use in daily work.</li> </ul>                                                                                                                                                                                                                                      | 10          | 6     |

## 6) List of Practicals / Exercises

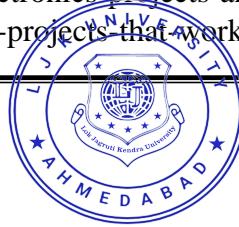
The practical/exercises should be properly designed and implemented in an attempt to develop different types of skills that students can acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

| Sr. No | Practicals / Exercises                                | Key Competency        | Hours |
|--------|-------------------------------------------------------|-----------------------|-------|
| 1      | PCB Designing of Basic and Analog Electronic Circuits | Electronic Components | 6     |
| 2      | PCB Designing of Power Supplies                       | Electronic Components | 6     |
| 3      | PCB Designing of Different Sensor modules             | Electronic Components | 6     |
| 4      | PCB Designing of Electronics Projects                 | Electronic Components | 6     |

## 7) Execution Mode

- Every student should perform Project activity independently as assigned by the faculty based on interest of the student. Student can also choose any other similar activity with a prior approval from the concerned faculty.
- Project activities shall be carried out throughout the semester and present the project report at the end of the semester.
- Report-size shall be qualitative and not to exceed 6 pages
- Each of the activity can be carried out off-class; however, demonstration/presentation should be done during laboratory sessions.
- Assessment shall be made based on quality of activity, presentation/demonstration and report.
- Assessment is made based on quality of work as prescribed by the following rubrics table.

## 8) Model of rubrics for assessing student activity (for every student)


| Rubrics Topic                                           | Marks |
|---------------------------------------------------------|-------|
| 1. Research, information gathering, and sharing of work | 10    |
| 2. Design of PCB, Schematic                             | 20    |
| 3. Layout design                                        | 20    |
| 4. Fabrication                                          | 20    |
| 5. Mounting component, testing, report and viva         | 30    |
| Total Marks:                                            | 100   |

## 9) Reference Books

- 1) P-Cad 2002 Professional Tools for Board Layout Specialists, Altium Limited
- 2) Complete PCB design using OrCAD capture and layout by Kraig Mitzner, Newnes Publication, Oxford

## 10) Open Sources (Website, Video, Movie)

- 1) [www.expresspcb.com/expresspcbhtm/download.htm](http://www.expresspcb.com/expresspcbhtm/download.htm)
- 2) [www.freepcb.com/](http://www.freepcb.com/)
- 3) <http://www.circuitstoday.com/simple-electronics-projects-and-circuits>
- 4) <http://www.buildcircuit.com/5-beginners-projects-that-work-in-the-first-attempt/>

