

Diploma in Automobile Engineering

Course Code: 025010203

Engineering Materials and Mechanics of Solids

Programme / Branch Name			Diploma in Automobile Engineering				
Course Name	Engineering	Materials and	Mechanics of Solids		Course Code	025010203	
Course Type	HSSC	BSC	ESC	PCC	OEC	PEC	

Legends: HSSC: Humanities and Social Sciences Courses BSC: Basic Science Courses

ESC: Engineering Science Courses
OEC: Open Elective Courses
PCC: Program Core Courses
PEC: Program Elective Courses

1. Teaching and Evaluation Scheme

Teaching Hours / Week			Evaluation Scheme						
L	Т	P	Total Teaching Hours	Total Credit	CA	CCE	SEE (TH)	SEE (PR)	Total
4	0	0	4	4	10	40	50	-	100

Legends: L: Lectures T: Tutorial P: Practical

CA: Continuous Assessment (Attendance + Activity)

CCE: Continuous & Comprehensive Evaluation

SEE (Th): Semester End Evaluation (Theory)
SEE (Pr): Semester End Evaluation (Practical)

2. Prerequisite

✓ Physics and Mathematics (Pre-university level)

3. Rationale

Engineers need to be updated with the latest materials to meet the challenges of developing cost-effective technologies. This subject, therefore, highlights advance in engineering materials, also this subject is conceptual applications of principles of mechanics of rigid and deformable bodies in Engineering.

4. Objectives

- ✓ To develop the knowledge of the structure of materials including crystallography, microstructure, defects and phase diagrams.
- ✓ To provide an understanding to students on the correlation between structure, processing, mechanical properties and performance of materials.
- ✓ To develop the knowledge on mechanical properties of materials and strengthening mechanism.
- ✓ Study about stresses, strains and deformation of various simple mechanical components under load.
- ✓ To study theories of failure and the criteria for failure.

5. Contents

Unit No.	Unit Name	Topics	Learning Outcome	% Weightage	Hours
1.	Engineering Metals and Alloys	 1.1. Introduction to Metals and Alloys 1.2. Classification and Selection of Materials 1.3. Mechanical, Thermal & Physical Properties of Materials 1.4. Ferrous Metals and Alloys: Classification, Composition, Properties & Uses of Alloy Steel Iron-Carbon Diagram 1.5. Non-Ferrous Metals and Alloys: Classification, Composition, Properties and Uses of Aluminum and Magnesium Alloys 	 Evaluate Properties of Alloying Elements. Identify Properties and Application of Ferrous & Non-Ferrous Metals. 	15	9
2.	Heat Treatment Process	 2.1. Theory of Heat Treatment 2.2. Purpose of Heat Treatment 2.3. Principle of Heat Treatment 2.4. Heat Treatment Process: Annealing, Normalizing, Tempering, Hardening, Induction Hardening, Case Hardening Carburizing, Nitriding 	 Explain Concepts of Heat Treatment Process. Application of Suitable Heat Treatment Process Based on Material Properties. 	25	14
3.	Fundamentals of Engineering Mechanics	 3.1. Composition and Resolution of Forces: Characteristics of Force, System of Forces, Resultant Force and Methods. 3.2. Simple Stress and Strain: Classification of Loads, Terminologies related 	• Compute Various Forces, Stress and Strain.	15	9

4.	Shear Force and Bending Moment	4.1. Introduction to: Types of Beams, Loads & Supports, Shear Force & Bending Moment, Relation Between S.F and B.M 4.2. Simply Supported Beam: Simply Supported Beam with a Point Load, Simply Supported Beam with Uniformly Distributed Load & Uniformly Varying Load 4.3. Cantilever Beam: Cantilever Beam with a Point Load, Cantilever Beam with Uniformly Distributed Load & Uniformly Varying Load	 Understand Shear Force and Bending Moment Diagrams for Various Beams. Compute Bending Stress, and Shear Stress at Various Points in Beams. 	25	13
5.	Centre of Gravity and Moment of Inertia	 5.1. Centre of Gravity: Centroid and Centre of Gravity, Centre of Gravity by Geometrical Considerations 5.2. Moment of Inertia: Moment of Inertia of Plane Area, Theorem of Parallel Axis, Radius of Gyration, Moment of Inertia of Symmetric and Composite Section 		20	11

Total Hours 56

6. Suggested Specification Table for Evaluation Scheme

Unit No.	This Nome		Distribution of Topics According to Bloom's Taxonomy						
	Unit Name	R %	U %	App %	C %	E %	An %		
1.	Engineering Metals and Alloys	30	40	10	00	10	10		
2.	Heat Treatment Process	25	50	25	00	00	00		
3.	Fundamentals of Engineering Mechanics	30	50	10	00	00	10		
4.	Shear Force and Bending Moment	20	20	30	00	10	20		
5.	Centre of Gravity and Moment of Inertia	20	40	20	00	10	10		

Legends: R: Remembering U: Understanding

App: Applying C: Creating E: Evaluating An: Analyzing

7. Textbooks

- 1) Material Science and Engineering by R.K.Rajput, Ketson Books.
- 2) Strength of Materials by R.S.Khurmi, S.Chand Publication.

8. Reference Books

- 1) A Text Book on Production Technology Vol.1 by O.P.Khanna, Dhanpat Rai Publication
- 2) Strength of Materials by R.K.Rajput, S.Chand Publication
- 3) Strength of Materials by S.Ramamrutham, Dhanpat Rai Publication
- 4) Materials Science and Metallurgy by K. I. Parashivamurthy, Pearson Education
- 5) Mechanics of Materials by R.C. Hibbler, Pearson
- 6) An Introduction to Mechanics of Solids by S.H.Crandall, Tata McGraw Hill
- 7) Material Science by G.Rangarajan, Tata McGraw Hill
- 8) Engineering Materials: Properties and Selection by Budinski, Pearson

9. Open Sources (Website, Video, Movie)

- 1) https://www.youtube.com/c/TheAutomotives
- 2) https://www.youtube.com/channel/UC4la8Cf7-DxaxsfMhaWpHiQ
- 3) https://theautomobileengineers.blogspot.com/
- 4) http://nptel.ac.in/
- 5) https://www.youtube.com/c/LearnEngineering
- 6) http://www.learnerstv.com/
- 7) http://auto.howstuffworks.com/

