

Diploma in Automobile Engineering

Course Code: 025010204
Thermal Engineering

Programme / Branch Name			Diploma in Automobile Engineering				
Course Name	Thermal Eng	gineering			Course Code	025010204	
Course Type	HSSC	BSC	ESC	PCC	OEC	PEC	

Legends: HSSC: Humanities and Social Sciences Courses

BSC: Basic Science Courses

ESC: Engineering Science Courses

OEC: Open Elective Courses

PCC: Program Core Courses

PEC: Program Elective Courses

1. Teaching and Evaluation Scheme

Teaching Hours / Week			Evaluation Scheme						
L	Т	P	Total Teaching Hours	Total Credit	CA	CCE	SEE (TH)	SEE (PR)	Total
3	2	0	5	5	10	40	50	-	100

Legends: L: Lectures T: Tutorial P: Practical

CA: Continuous Assessment (Attendance + Activity)

CCE: Continuous & Comprehensive Evaluation

SEE (Th): Semester End Evaluation (Theory)
SEE (Pr): Semester End Evaluation (Practical)

2. Prerequisite

✓ Physics (Pre-university level)

3. Rationale

To provide an appreciation of energy conversion processes in the context of engineering applications and to introduce the laws of thermodynamics.

4. Objectives

- ✓ Understand the energy conversion processes involving heat, work and energy storage.
- ✓ The application of thermodynamic principles to the propulsion of land, sea and air transport and in the generation of power.
- ✓ Analysis of various thermal processes and plant.
- ✓ Identify information requirements and sources for analysis and evaluation
- ✓ Synthesize information and ideas for use in the evaluation process.

5. Contents

Unit No.	Unit Name	Topics	Learning Outcome	% Weightage	Hours
1	Principles of Thermodynamics	 1.1. Introduction to Thermodynamics 1.2. Thermodynamic System Types of System, Control Volume, Concept of Continuum 1.3. Thermodynamic Properties: Thermodynamic Terminologies, Macroscopic and Microscopic Approach, State, Process and Cycle, Quasi-static Process 1.4. Work and Heat Transfer 1.5. Zeroth Law of Thermodynamics 	 Understand basics of thermodynamic. Know about thermodynamic terminologies and processes. 	10	08
2	First Law of Thermodynamics	2.1. First Law of Thermodynamics, Law of Conservation of Energy, First law of Thermodynamics changing Cycle, First law of Thermodynamics undergoing a change of State, Energy- A property of System 2.2. Flow and Non-Flow Process, Flow process & Control Volume, Steady & Unsteady flow Process 2.3. Steady Flow Energy Equation, SFEE Through a generalized open System, Application of SFEE to Thermal System 2.4. Perpetual Motion Machine of First Kind	• Understand & apply first law of thermodynamics & PPM 1.	25	12
3	Second Law of Thermodynamics	3.1. Second Law of Thermodynamics: Limitation of First law of Thermodynamics, Kelvin Plank and Claussis Statement of the second law of Thermodynamics, Comparisons of Kelvin Plank and Claussis	Understand & apply second law of thermodynamics & PPM 2.	35	13

		Statement, Perpetual Motion Machine of the second kind 3.2. Thermal Energy Reservoir: Heat Engines, Heat Pumps, Refrigerator, Coefficient of Performance 3.3. Reversibility and Irreversibility: Causes of Irreversibility, Conditions for Reversibility, Carnot Cycle			
4	Properties of	 4.1. Gas Laws: Boyle's Law, Charles Law and Gay-Lussac Law, Avogadro's Law, Gibbs Dalton Law 4.2. Ideal Gas: Properties of Ideal Gas, Equation of Ideal Gas, Specific Heats, Internal Energy, Enthalpy and Entropy 	• Comprehend principles of ideal gas.	15	5
5	Heat Transfer	5.1. Fundamentals of Heat Transfer 5.2. Conduction: Fourier's Law of Heat Conduction, One Dimension Steady-State Conduction 5.3. Convection: Types of Convection, Newton's Law of Cooling 5.4. Radiation: Fundamentals of Radiation, Kirchhoff's Law and Stefan Boltzmann Law of Radiation	• Understand & apply heat transfer methods.	15	4

Total Hours 42

6. Suggested Specification Table for Evaluation Scheme

Unit No.	Unit Name	Distribution of Topics According to Bloom's Taxonomy					
	Unit Name	R %	U %	App %	C %	E %	An %
1	Principles of Thermodynamics	40	40	0	0	20	0
2	First Law of Thermodynamics	30	35	15	0	20	0
3	Second Law of Thermodynamics	35	40	15	0	10	0
4	Properties of Gases and Mixtures	50	50	0	0	0	0
5	Heat Transfer	40	50	10	0	0	0

Legends: R: Remembering U: Understanding

App: Applying C: Creating E: Evaluating An: Analyzing

7. Textbooks

- 1) Engineering Thermodynamics by P.K Nag, Tata McGraw Hill.
- 2) Thermodynamics by S.C Gupta, Pearson.

8. Reference Books

- 1) Engineering Thermodynamics by Gordon Rogers, Pearson.
- 2) Elements of Mechanical Engineering by Dr Sadhu Singh, S.Chand Publications.
- 3) Heat and Mass Transfer by R. K Rajput, S.Chand Publications.
- 4) Thermal Engineering by R. K Rajput, S.Chand Publications.
- 5) Thermodynamics: An Engineering Approach, by Cengel & Boles, 4th Edition. McGraw Hill.
- 6) Thermodynamic and Transport Properties of Fluids, by Rogers and Mayhew, Basil Blackwell.
- 7) Thermal Engineering, by Rudra Moorthy R, Tata McGraw-Hill, New Delhi, 2010.

9. Open Sources (Website, Video, Movie)

- 1) https://www.youtube.com/c/TheAutomotives
- 2) https://www.youtube.com/channel/UC4la8Cf7-DxaxsfMhaWpHiQ
- 3) https://theautomobileengineers.blogspot.com/
- 4) http://nptel.iitm.ac.in/courses/IIT-MADRAS/Applied_Thermodynamics/index.php
- 5) https://www.youtube.com/channel/UCqZQJ4600a9wIfMPbYc60OQ
- 6) https://www.youtube.com/channel/UC9ZmmnmSWeeg58lZ0ilDrOA
- 7) http://blog.automotive-technology.com/
- 8) https://ocw.mit.edu/courses/chemistry/5-60-thermodynamics-kinetics-spring-2008/

